Gender Differences in Association between Air Pollution and Daily Mortality in the Capital of the Green Lungs of Poland-Population-Based Study with 2,953,000 Person-Years of Follow-Up

Łukasz Kuźma, Krzysztof Struniawski, Szymon Pogorzelski, Hanna Bachórzewska-Gajewska, Sławomir Dobrzycki, Łukasz Kuźma, Krzysztof Struniawski, Szymon Pogorzelski, Hanna Bachórzewska-Gajewska, Sławomir Dobrzycki

Abstract

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok-the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number-and causes of death-of Białystok residents in the period 2008-2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02-1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01-1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02-1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.

Keywords: air pollution; cardiovascular mortality; gender difference; mortality; sulfur dioxide.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Air Quality in Europe—2017 Report. European Environment Agency [Internet] [(accessed on 1 November 2019)];2017 Available online:
    1. Wilkins E.T. Air pollution aspects of the London fog of December 1952. Q. J. R. Meteorol. Soc. 1954;80:267–271. doi: 10.1002/qj.49708034420.
    1. Bhaskaran K., Hajat S., Haines A., Herrett E., Wilkinson P., Smeeth L. Effects of air pollution on the incidence of myocardial infarction. Heart. 2009;95:1746–1759. doi: 10.1136/hrt.2009.175018.
    1. Peters A., Dockery D.W., Muller J.E., Mittleman M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001;103:2810–2815. doi: 10.1161/01.CIR.103.23.2810.
    1. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., et al. ESC Scientific Document Group, 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) Eur. Heart J. 2020;41:407–477. doi: 10.1093/eurheartj/ehz425.
    1. Franklin B.A., Brook R., Pope C.A. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015;40:207–238. doi: 10.1016/j.cpcardiol.2015.01.003.
    1. McGuinn L.A., Ward-Caviness C.K., Neas L.M., Schneider A., Diaz-Sanchez D., Cascio W.E., Kraus W.E., Hauser E., Dowdy E., Haynes C., et al. Association between satellite-based estimates of long-term PM2.5 exposure and coronary artery disease. Environ. Res. 2016;145:9–17. doi: 10.1016/j.envres.2015.10.026.
    1. Brunekreef B., Holgate S.T. Air pollution and health. Lancet. 2002;360:1233–1242. doi: 10.1016/S0140-6736(02)11274-8.
    1. Héroux M.E., Anderson H.R., Atkinson R., Brunekreef B., Cohen A., Forastiere F., Hurley F., Katsouyanni K., Krewski D., Krzyzanowski M., et al. Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project. Int. J. Public Health. 2015;60:619–627. doi: 10.1007/s00038-015-0690-y.
    1. Kuźma Ł., Pogorzelski S., Struniawski K., Dobrzycki S., Bachórzewska-Gajewska H. Effect of air pollution on the number of hospital admissions for acute coronary syndrome in elderly patients. Pol. Arch. Intern. Med. 2020;130:38–46. doi: 10.20452/pamw.15064.
    1. Zeng Q., Li G., Zhang L., Tian L., Pan X. Acute effects of SO2 and NO2 on mortality in the six cities of China. Chin. J. Prev. Med. 2015;49:1085–1091.
    1. Wang N., Mengersen K., Tong S., Kimlin M., Zhou M., Wang L., Yin P., Xu Z., Cheng J., Zhang Y., et al. Short-term association between ambient air pollution and lung cancer mortality. Environ. Res. 2019;179:108748. doi: 10.1016/j.envres.2019.108748.
    1. Air Protection Program for the Bialystok and Białystok Agglomeration, Opole, 2011. [(accessed on 1 November 2019)]; Available online: .
    1. Tsouros A. City leadership for health and sustainable development: The World Health Organization European Healthy Cities Network. Health Promot. Int. 2009;24:i4–i10. doi: 10.1093/heapro/dap050.
    1. Geneva, Switzerland World Health Organization 1992 [Internet] World Health Organization, International Classification of Diseases, 10th Revision (ICD-10) [(accessed on 1 November 2019)]; Available online:
    1. World Health Organization Ambient (Outdoor) Air Quality and Health (Update 2 May 2018) [(accessed on 1 November 2019)]; Available online:
    1. Bhaskaran K., Gasparrini A., Hajat S., Smeeth L., Armstrong B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013;42:1187–1195. doi: 10.1093/ije/dyt092.
    1. Altman D.G., Bland J.M. Interaction revisited: The difference between two estimates. BMJ. 2003;326:219. doi: 10.1136/bmj.326.7382.219.
    1. Eurostat: Causes and Occurrence of Deaths in the EU. [(accessed on 1 November 2019)]; Available online: .
    1. Central Statistical Office: Life Expectancy Tables of Poland 2018. [(accessed on 1 November 2019)]; Available online: .
    1. Eurostat: People in the EU: Who Are We and How Do We Live? [(accessed on 1 November 2019)];2015 Available online: .
    1. Eurostat: Cardiovascular Diseases Statistics. [(accessed on 1 November 2019)]; Available online: .
    1. Printz C. Cancer death rate declines 25% after 1991 peak. Cancer. 2017;123:2593. doi: 10.1002/cncr.30833.
    1. Wojtyniak B., Gorynski P. NIZP-PZH: Health Status of Polish Population and Its Determinants. [(accessed on 1 November 2019)]; Available online: .
    1. Simoni M., Baldacci S., Maio S., Cerrai S., Sarno G., Viegi G. Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis. 2015;7:34–45.
    1. Ohlwein S., Klümper C., Vossoughi M., Sugiri D., Stolz S., Vierkötter A., Schikowski T., Kara K., Germing A., Quass U., et al. Air pollution and diastolic function in elderly women—Results from the SALIA study cohort. Int. J. Hyg. Environ. Health. 2016;219:356–363. doi: 10.1016/j.ijheh.2016.02.006.
    1. Wu Y., Li R., Cui L., Meng Y., Cheng H., Fu H. The high-resolution estimation of sulfur dioxide (SO(2)) concentration, health effect and monetary costs in Beijing. Chemosphere. 2019;241:125031. doi: 10.1016/j.chemosphere.2019.125031,.
    1. Yang B.Y., Qian Z., Howard S.W., Vaughn M.G., Fan S.J., Liu K.K., Dong G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018;235:576–588. doi: 10.1016/j.envpol.2018.01.001.
    1. Goldberg M.S., Burnett R.T., Stieb D.M., Brophy J.M., Daskalopoulou S.S., Valois M.-F., Brook J.R. Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. Sci. Total Environ. 2013;463:931–942. doi: 10.1016/j.scitotenv.2013.06.095.
    1. Romieu I., Gouveia N., Cifuentes L.A., De Leon A.P., Junger W., Vera J., Strappa V., Hurtado-Díaz M., Miranda-Soberanis V., Rojas-Bracho L., et al. Multicity study of air pollution and mortality in Latin America (the ESCALA study) Res. Rep. Health Eff. Inst. 2012;171:5–86.
    1. Pope C.A., Muhlestein J.B., Anderson J.L., Cannon J.B., Hales N.M., Meredith K.G., Le V., Horne B.D. Short-Term Exposure to Fine Particulate Matter Air Pollution is Preferentially Associated With the Risk of ST-Segment Elevation Acute Coronary Events. J. Am. Heart Assoc. 2015;4:e002506. doi: 10.1161/JAHA.115.002506.
    1. Khan R., Konishi S., Sheng Ng C., Umezaki M., Ferdosi A., Tasmin S., Watanabe C. Association between short-term exposure to fine particulate matter and daily emergency room visits at a cardiovascular hospital in Dhaka, Bangladesh. Sci. Total Environ. 2019;646:1030–1036. doi: 10.1016/j.scitotenv.2018.07.288.
    1. Argacha J.F., Collart P., Wauters A., Kayaert P., Lochy S., Schoors D., Sonck J., De Vos T., Forton M., Brasseur O., et al. Air pollution and ST-elevation myocardial infarction: A case-crossover study of the Belgian STEMI registry 2009–2013. Int. J. Cardiol. 2016;223:300–305. doi: 10.1016/j.ijcard.2016.07.191.
    1. Keebaugh A.J., Sioutas C., Pakbin P., Schauer J.J., Mendez L.B., Kleinman M.T. Is atherosclerotic disease associated with organic components of ambient fine particles? Sci. Total Environ. 2015;533:69–75. doi: 10.1016/j.scitotenv.2015.06.048.
    1. Yap J., Ng Y., Yeo K.K., Sahlén A., Lam C.S.P., Lee V., Ma S. Particulate air pollution on cardiovascular mortality in the tropics: Impact on the elderly. Environ. Health. 2019;18:34. doi: 10.1186/s12940-019-0476-4.
    1. Shahsavani A., Tobías A., Querol X., Stafoggia M., Abdolshahnejad M., Mayvaneh F., Guo Y., Hadei M., Hashemi S.S., Khosravi A., et al. Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. Environ. Int. 2019;134:105299. doi: 10.1016/j.envint.2019.105299.
    1. Yitshak-Sade M., Kloog I., Zanobetti A., Schwartz J.D. Estimating the causal effect of annual PM(2.5) exposure on mortality rates in the Northeastern and mid-Atlantic states. Environ. Epidemiol. 2019;3:e052. doi: 10.1097/EE9.0000000000000052.
    1. Bell M.L., Son J.Y., Peng R.D., Wang Y., Dominici F. Ambient PM2.5 and Risk of Hospital Admissions: Do Risks Differ for Men and Women? Epidemiology. 2015;26:575–579. doi: 10.1097/EDE.0000000000000310.
    1. Clougherty J.E. A growing role for gender analysis in air pollution epidemiology. Environ. Health Perspect. 2010;118:167–176. doi: 10.1289/ehp.0900994.
    1. Di Q., Wang Y., Zanobetti A., Wang Y., Koutrakis P., Choirat C., Dominici F., Schwartz J.D. Air Pollution and Mortality in the Medicare Population. N. Engl. J. Med. 2017;376:2513–2522. doi: 10.1056/NEJMoa1702747.
    1. Zanobetti A., Schwartz J., Dockery D.W. Airborne particles are a risk factor for hospital admissions for heart and lung disease. Environ. Health Perspect. 2000;108:1071–1077. doi: 10.1289/ehp.001081071.
    1. Burra T.A., Moineddin R., Agha M.M., Glazier R.H. Social disadvantage, air pollution, and asthma physician visits in Toronto, Canada. Environ. Res. 2009;109:567–574. doi: 10.1016/j.envres.2009.03.004.
    1. Bunch T.J., Horne B.D., Asirvatham S.J., Day J.D., Crandall B.G., Weiss J.P., Osborn J.S., Anderson J.L., Muhlestein J.B., Lappe D.L., et al. Atrial Fibrillation Hospitalization Is Not Increased with Short-Term Elevations in Exposure to Fine Particulate Air Pollution. Pacing Clin. Electrophysiol. 2011;34:1475–1479. doi: 10.1111/j.1540-8159.2011.03200.x.
    1. Crowley R.A., Moyer D.V., Delong D.M. Climate Change and Health. Ann. Intern. Med. 2016;165:747–748. doi: 10.7326/L16-0411.
    1. Guo Y., Barnett A.G., Yu W., Pan X., Ye X., Huang C., Tong S. A Large Change in Temperature between Neighbouring Days Increases the Risk of Mortality. PLoS ONE. 2011;6:e16511. doi: 10.1371/journal.pone.0016511.
    1. Liang W.M., Liu W.P., Chou S.Y., Kuo H.W. Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan. Int. J. Biometeorol. 2007;52:223–229. doi: 10.1007/s00484-007-0116-5.

Source: PubMed

3
Se inscrever