Circadian disorganization alters intestinal microbiota

Robin M Voigt, Christopher B Forsyth, Stefan J Green, Ece Mutlu, Phillip Engen, Martha H Vitaterna, Fred W Turek, Ali Keshavarzian, Robin M Voigt, Christopher B Forsyth, Stefan J Green, Ece Mutlu, Phillip Engen, Martha H Vitaterna, Fred W Turek, Ali Keshavarzian

Abstract

Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Protocol and timeline for circadian…
Figure 1. Protocol and timeline for circadian disruption, dietary changes, and stool collection.
A. Non-shifted mice were kept on a constant light:dark schedule for the entirety of the experiment whereas Shifted mice underwent once weekly light:dark inversion. Mice were maintained on a standard chow diet for the first 12 weeks of the study followed by a stool collection at the end of week 12. Mice were subsequently placed on a high-fat, high-sugar diet for 10 weeks and stool was collected at the end Week 22. Representative behavioral activity recording for a Non-shifted (B) and Shifted mouse (C). Activity is represented as dark areas in the actogram. These data demonstrate that non-shifted mice have stable behavioral patterns while the shifted mice have disrupted behavioral patterns. D. Expression of Per2 mRNA in the proximal colon one day after the week 22 stool collection demonstrates altered circadian expression in the intestine following the 22 weeks of phase shifting. Significant effect of light condition, (F(1,58) = 5.84, p = 0.02), Zeitgeber Time (ZT) (F(5,58) = 8.38, p<0.0001), and light condition x ZT interaction (F(5,58) = 9.67, p = <0.0001). E. Activity onset phase distribution on the day of stool collection for standard chow-fed and (left) and high-fat, high-sugar diet (right). Individual mouse onset times relative to the light:dark cycle are depicted by the circles, and vector means depicted by the lines. There were no significant differences between the mean phase angle of entrainment between the shifted and non-shifted mice at the time of stool sample collection, but shifted mice exhibited a greater dispersal of phases in both diets (p<0.05).
Figure 2. Effect of diet and circadian…
Figure 2. Effect of diet and circadian rhythm disruption on mouse gut microbial communities.
The non-metric multidimensional scaling (NMDS) plot demonstrates the effect of treatments on the overall mouse fecal microbial community structure, as assessed by bacterial small subunit ribosomal RNA gene amplicon sequencing . The NMDS plot is based on sample-standardized and square-root transformed abundance data. The NMDS plot and the hierarchical cluster overlay are based on a resemblance matrix calculated using S17 Bray-Curtis similarity. 2D stress values ranged from 0.04 to 0.17. ANOSIM: Analysis of similarities. SIMPER: Similarity percentages.
Figure 3. Mouse gut microbial community structure…
Figure 3. Mouse gut microbial community structure at the phylum level.
The bar graph graphically represents the average relative abundance of classified bacteria SSU rRNA gene amplicons belonging to the most abundant phyla.
Figure 4. Mouse gut microbial community structure…
Figure 4. Mouse gut microbial community structure at the class level.
The bar graph graphically represents the average relative abundance of classified bacteria SSU rRNA gene amplicons belonging to the most abundant taxon at the class level.
Figure 5. Mouse gut microbial community structure…
Figure 5. Mouse gut microbial community structure at the order level.
The bar graph graphically represents the average relative abundance of classified bacteria SSU rRNA gene amplicons belonging to the most abundant taxon at the order level.
Figure 6. Mouse gut microbial community structure…
Figure 6. Mouse gut microbial community structure at the family level.
The bar graph graphically represents the average relative abundance of classified bacteria SSU rRNA gene amplicons belonging to the most abundant taxon at the family level.
Figure 7. Family-level gut microbial community analysis.
Figure 7. Family-level gut microbial community analysis.
The composition of bacterial communities from each sample, grouped at the family level, was analyzed using principal component analysis of log-transformed and standardized data, as described in the text. Vectors, or arrows, point in the direction of the steepest increase of values for the corresponding family. The angle between arrows indicates approximated correlation (>90° indicates negative correlation). The samples are indicated with individual symbols, according to treatment, and the distance between symbols approximates the dissimilarity of their microbial communities, as measured by Euclidean distance. PCA axes 1 and 2 explain 47.51% of the variation.
Figure 8. Genus-level gut microbial community analysis.
Figure 8. Genus-level gut microbial community analysis.
A dual hierarchical dendogram describes the 40 most abundant genera detected in the amplicon sequence study (y-axis) across the mouse fecal samples. The heat map indicates the relative abundance of sequences derived from bacteria belonging to each genus, scaled to each sample (red = most abundant; green = no sequences) (x-axis). The clustering of samples was performed on the full dataset of sequences, and sequence data abundance values were standardized by sample, square-root transformed, and a resemblance matrix was generated using Bray-Curtis similarity. Similarly, hierarchical clustering was performed on the 40 most abundant species, using standardized abundance data and Bray-Curtis similarity. Group average hierarchical clustering was performed on both matrices.
Figure 9. Circadian disruption has a significant…
Figure 9. Circadian disruption has a significant effect on body weight.
Mice were weighed once weekly and the body weights of mice consuming either the Standard chow diet (A) or the high-fat, high-sugar diet (B) are depicted over the last six weeks of each diet calculated as a percent of either Week 7 or Week 17, respectively. (A) Both circadian rhythm disruption (F(1,90) = 4.93, p = 0.04) and time (F(5,90) = 20.24, p<0.0001) had a significant impact on body weight when mice were consuming the standard chow diet. (B) There was no effect of circadian disruption on body weight in the high-fat, high-sugar diet-fed mice (F(1,159) = 0.03, p = 0.85) while time did have a significant impact (F(9,159) = 43.14, p<0.0001).

References

    1. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95: 6578–6583.
    1. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31: 107–133.
    1. Manichanh C, Borruel N, Casellas F, Guarner F (2012) The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 9: 599–608.
    1. Sanz Y, Santacruz A, Gauffin P (2010) Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 69: 434–441.
    1. Bozek K, Relogio A, Kielbasa SM, Heine M, Dame C, et al. (2009) Regulation of clock-controlled genes in mammals. PLoS One 4: e4882.
    1. Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, et al. (2013) Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation. PLoS One 8: e67102.
    1. Preuss F, Tang Y, Laposky AD, Arble D, Keshavarzian A, et al. (2008) Adverse effects of chronic circadian desynchronization in animals in a "challenging" environment. Am J Physiol Regul Integr Comp Physiol 295: R2034–R2040.
    1. Teixeira TF, Collado MC, Ferreira CL, Bressan J, Peluzio MC (2012) Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res 32: 637–647.
    1. Frazier TH, DiBaise JK, McClain CJ (2011) Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr 35: 14S–20S.
    1. Tang Y, Preuss F, Turek FW, Jakate S, Keshavarzian A, et al. (2009) Sleep deprivation worsens inflammation and delays recovery in a mouse model of colitis. Sleep Med 10: 597–603.
    1. Batschelet E. (1981) Circular Statistics in Biology. New York: Academic Press.
    1. Nanji AA, Zhao S, Sadrzadeh SM, Dannenberg AJ, Tahan SR, et al. (1994) Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil-ethanol-fed rats. Alcohol Clin Exp Res 18: 1280–1285.
    1. Tipoe GL, Liong EC, Casey CA, Donohue TM, Eagon PK, et al. (2008) A voluntary oral ethanol-feeding rat model associated with necroinflammatory liver injury. Alcohol Clin Exp Res 32: 669–682.
    1. Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, et al. (2011) Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61: 821–831.
    1. Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, et al. (2010) Black Box Chimera Check (B2C2): a Windows-Based Software for Batch Depletion of Chimeras from Bacterial 16S rRNA Gene Datasets. Open Microbiol J 4: 47–52.
    1. Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology & Biochemistry 40: 2762–2770.
    1. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
    1. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145.
    1. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, et al. (2012) The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1: 7.
    1. Clarke KR, Warwick RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, UK: Primer-E Ltd.
    1. Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version. 4 (5)) 1–500.
    1. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772.
    1. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, et al. (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137: 1716–1724.
    1. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213–223.
    1. Parks BW, Nam E, Org E, Kostem E, Norheim F, et al. (2013) Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17: 141–152.
    1. Abell GC, Cooke CM, Bennett CN, Conlon MA, McOrist AL (2008) Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol 66: 505–515.
    1. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6: 1535–1543.
    1. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, et al. (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105: 2420–2428.
    1. Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ (2006) Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12: 1136–1145.
    1. Chen W, Liu F, Ling Z, Tong X, Xiang C (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7: e39743.
    1. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, et al. (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63: 727–35.
    1. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, et al. (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110: 9066–9071.
    1. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, et al. (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308: 1043–1045.
    1. Bhatti P, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA (2013) Nightshift work and risk of ovarian cancer. Occup Environ Med 70: 231–237.
    1. Conlon M, Lightfoot N, Kreiger N (2007) Rotating shift work and risk of prostate cancer. Epidemiology 18: 182–183.
    1. Mukherji A, Kobiita A, Ye T, Chambon P (2013) Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153: 812–827.
    1. Rescigno M (2011) The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol 32: 256–264.
    1. Shibolet O, Podolsky DK (2007) TLRs in the Gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am J Physiol Gastrointest Liver Physiol 292: G1469–G1473.
    1. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8: 411–420.
    1. Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, et al. (2012) Circadian rhythms and cardiovascular health. Sleep Med Rev 16: 151–166.
    1. Maury E, Ramsey KM, Bass J (2010) Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 106: 447–462.
    1. Everson CA, Toth LA (2000) Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regul Integr Comp Physiol 278: R905–R916.
    1. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, et al. (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25: 397–407.
    1. Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9: 591–598.
    1. Bangsgaard Bendtsen KM, Krych L, Sorensen DB, Pang W, Nielsen DS, et al. (2012) Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One 7: e46231.
    1. Knowles SR, Nelson EA, Palombo EA (2008) Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol Psychol 77: 132–137.
    1. Holdeman LV, Good IJ, Moore WE (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31: 359–375.
    1. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, et al. (2010) Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 78: 1509–1519.
    1. Wright KP, Bogan RK, Wyatt JK (2013) Shift work and the assessment and management of shift work disorder (SWD). Sleep Med Rev 17: 41–54.
    1. Robles A, V, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109 Suppl 2S21–S26.
    1. Blaut M, Klaus S (2012) Intestinal microbiota and obesity. Handb Exp Pharmacol 251–273.
    1. Burgess HJ, Swanson GR, Keshavarzian A (2010) Endogenous melatonin profiles in asymptomatic inflammatory bowel disease. Scand J Gastroenterol 45: 759–761.
    1. Swanson GR, Burgess HJ, Keshavarzian A (2011) Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol 7: 29–36.
    1. Ananthakrishnan AN, Long MD, Martin CF, Sandler RS, Kappelman MD (2013) Sleep disturbance and risk of active disease in patients with Crohn's disease and ulcerative colitis. Clin Gastroenterol Hepatol 11: 965–971.
    1. Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A 100: 2495–2500.
    1. Edgar RS, Green EW, Zhao Y, van OG, Olmedo M, et al. (2012) AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485: 459–464.

Source: PubMed

3
Se inscrever