What Is the Role of Nutritional Supplements in Support of Total Hip Replacement and Total Knee Replacement Surgeries? A Systematic Review

Louise C Burgess, Stuart M Phillips, Thomas W Wainwright, Louise C Burgess, Stuart M Phillips, Thomas W Wainwright

Abstract

Nutritional supplements can influence outcomes for individuals undergoing major surgery, particularly in older persons whose functional reserve is limited. Accelerating recovery from total hip replacement (THR) and total knee replacement (TKR) may offer significant benefits. Therefore, we explored the role of nutritional supplements in improving recovery following THR and TKR. A systematic review was conducted to source randomized clinical trials that tested nutritional supplements in cohorts of THR or TKR patients. Our search yielded nine relevant trials. Intake of a carbohydrate-containing fluid is reported to improve insulin-like growth factor levels, reduce hunger, nausea, and length of stay, and attenuate the decrease in whole-body insulin sensitivity and endogenous glucose release. Amino acid supplementation is reported to reduce muscle atrophy and accelerate return of functional mobility. One paper reported a suppressive effect of beta-hydroxy beta-methylbutyrate, L-arginine, and L-glutamine supplementation on muscle strength loss following TKR. There is limited evidence for nutritional supplementation in THR and TKR pathways; however, the low risk profile and potential benefits to adjunctive treatment methods, such as exercise programs, suggest nutritional supplements may have a role. Optimizing nutritional status pre-operatively may help manage the surgical stress response, with a particular benefit for undernourished, frail, or elderly individuals.

Keywords: enhanced recovery after surgery; nutrition; orthopedics; total hip replacement; total knee replacement.

Conflict of interest statement

Thomas Wainwright has received speaker’s honoraria for various enhanced recovery after surgery symposia, but has no relevant conflict of interest related to this work. The manuscript solely represents a systematic review of recent scientific data, all of which were independent of industry or agencies. The author was not paid to write the article, nor is in any way dependent on any pharmaceutical/medical device company or other agencies. He is a director/treasurer of The Enhanced Recovery after Surgery Society (UK) c.i.c. (not-for-profit organization—Company No. 10932208). The other authors have no relevant conflicts of interest to declare.

Figures

Figure 1
Figure 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

References

    1. Rosenberg I.H., Miller J.W. Nutritional factors in physical and cognitive functions of elderly people. Am. J. Clin. Nutr. 1992;55:1237S–1243S. doi: 10.1093/ajcn/55.6.1237S.
    1. Molfino A., Gioia G., Fanelli F.P., Muscaritoli M. The role of dietary omega-3 fatty acids supplementation in older adults. Nutrients. 2014;6:4058–4072. doi: 10.3390/nu6104058.
    1. Carli F., Ferreira V. Prehabilitation: A new era of integration between geriatricians, anaesthesiologists, and exercise therapists. Aging Clin. Exp. Res. 2018;30:241–244. doi: 10.1007/s40520-017-0875-8.
    1. Braga M. The 2015 ESPEN Arvid Wretlind lecture. Evolving concepts on perioperative metabolism and support. Clin. Nutr. 2016;35:7–11. doi: 10.1016/j.clnu.2015.12.012.
    1. Ljungqvist O., Dardai E., Allison S.P. Basics in Clinical Nutrition: Perioperative Nutrition. Clin. Nutr. e-SPEN. 2010;5:e93–e96. doi: 10.1016/j.eclnm.2009.06.011.
    1. Paddon-Jones D., Coss-Bu J.A., Morris C.R., Phillips S.M., Wernerman J. Variation in protein origin and utilisation: Research and clinical application. Nutr. Clin. Pract. 2017;32:48S–57S. doi: 10.1177/0884533617691244.
    1. Phillips S.M. Current concepts and unresolved questions in dietary protein requirements and supplements in adults. Front. Nutr. 2017;4:13. doi: 10.3389/fnut.2017.00013.
    1. Phillips S.M. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia. Adv. Nutr. 2015;6:452–460. doi: 10.3945/an.115.008367.
    1. Dreyer H.C., Volpi E. Role of protein and amino acids in the pathophysiology and treatment of sarcopenia. J. Am. Coll. Nutr. 2011;24:140S–145S. doi: 10.1080/07315724.2005.10719455.
    1. Brady M.C., Kinn S., Stuart P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst. Rev. 2003 doi: 10.1002/14651858.CD004423.
    1. Bilku D.K., Dennison A.R., Hall T.C., Metcalfe M.S., Garcea G. Role of preoperative carbohydrate loading: A systematic review. Ann. R. Coll. Surg. Engl. 2014;96:15–22. doi: 10.1308/003588414X13824511650614.
    1. Ljungqvist O., Soreide E. Preoperative fasting. Br. J. Surg. 2003;90:400–406. doi: 10.1002/bjs.4066.
    1. Lassen K., Soop M., Nygren J., Cox P.B., Hendry P.O., Spies C., von Meyenfeldt M.F., Fearon K.C., Revhaug A., Norderval S., et al. Consensus review of optimal perioperative care in colorectal surgery. Enhanced Recovery After Surgery (ERAS) Group Recommendations. JAMA Surg. 2009;144:961–969.
    1. Svanfeldt M., Thorell A., Hausel J., Soop M., Rooyackers O., Nygren J., Ljungqvist O. Randomized clinical trial of the effect of preoperative oral carbohydrate treatment on postoperative whole-body protein and glucose kinetics. Br. J. Surg. 2007;94:1342–1350. doi: 10.1002/bjs.5919.
    1. Ljungqvist O., Nygren J., Thorell A. Modulation of post-operative insulin resistance by pre-operative carbohydrate loading. Proc. Nutr. Soc. 2002;61:329–335. doi: 10.1079/PNS2002168.
    1. Ljungqvist O., Soop M., Hedstrom M. Why metabolism matters in elective orthopaedic surgery. A review. Acta Orthop. 2007;78:610–615. doi: 10.1080/17453670710014293.
    1. National Joint Registry National Joint Registry 14th Annual Report. [(accessed on 2 March 2018)];2017 Available online:
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., The PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Higgins J.P.T., Moher D., Schulz K.F., Sterne J.A.C. Cochrane Statistical Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Dreyer H.C., Strycker L.A., Senesac H.A., Hocker A.D., Smolkowski K., Shah S.N., Jewett B.A. Essential amino acid supplementation in patients following total knee arthroplasty. J. Clin. Investig. 2013;123:4654–4666. doi: 10.1172/JCI70160.
    1. Nishizaki K., Ikegami H., Tanaka Y., Imai R., Matsumura H. Effects of supplementation with a combination of β-hydroxy-β-methyl butyrate, L-arginine, and L-glutamine on postoperative recovery of quadriceps muscle strength after total knee arthroplasty. Asia Pac. J. Clin. Nutr. 2015;24:412–420.
    1. Alito M.A., de Aguilar-Nascimento J.E. Multimodal perioperative care plus immunonutrition versus traditional care in total hip arthroplasty: A randomized pilot study. Nutr. J. 2016;15:34. doi: 10.1186/s12937-016-0153-1.
    1. Aronsson A., Al-Ani N.A., Brismar K., Hedstrőm K. A carbohydrate-rich drink shortly before surgery affected IGF-1 bioavailability after a total hip replacement. A double-blind placebo controlled study on 29 patients. Aging Clin. Exp. Res. 2008;21:97–101. doi: 10.1007/BF03325216.
    1. Hartsen A., Hjartarson H., Toksvig-Larsen S. Total hip arthroplasty and perioperative oral carbohydrate treatment: A randomised, double blind, controlled trial. Eur. J. Anaesthesiol. 2012;29:259–260.
    1. Ljunggren S., Hahn R.G. Oral nutrition or water loading before hip replacement surgery; a randomized clinical trial. Trials. 2012;13:97. doi: 10.1186/1745-6215-13-97.
    1. Nygren J., Soop M., Thorell A., Nair K.S., Ljungqvist O. Preoperative oral carbohydrates and postoperative insulin resistance. Clin. Nutr. 1999;18:117–120. doi: 10.1016/S0261-5614(99)80063-6.
    1. Soop M., Nygren J., Myrenfors P., Thorell A., Ljungqvist O. Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2001;280:E576–E583. doi: 10.1152/ajpendo.2001.280.4.E576.
    1. Soop M., Nygren J., Thorell A., Weidenhielm L., Lungberg M., Hammargvist F., Ljungqvist O. Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery. Clin. Nutr. 2004;23:733–741. doi: 10.1016/j.clnu.2003.12.007.
    1. Wilkinson D.J., Hossian T., Hill D.S., Phillips B.E., Crossland H., Williams J., Loughna P., Churchward-Venne T.A., Breen L., Phillips S.M., et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013;591:2911–2923. doi: 10.1113/jphysiol.2013.253203.
    1. Husted H., Lunn T.H., Troelsen A., Gaarn-Larsen L., Kristensen B.B., Kehlet H. Why still in hospital after fast-track hip and knee arthroplasty? Acta Orthop. 2011;82:679–684. doi: 10.3109/17453674.2011.636682.
    1. Kehlet H. Fast-track hip and knee arthroplasty. Lancet. 2013;381:1600–1602. doi: 10.1016/S0140-6736(13)61003-X.
    1. Gaudilliere B., Fragiadakis G.K., Bruggner R.V., Nicolau M., Finck R., Tingle M., Silva J., Ganio E.A., Yeh C.G., et al. Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl. Med. 2014;6:255ra131. doi: 10.1126/scitranslmed.3009701.
    1. Bamman M.M., Ferrando A.A., Evans R.P., Stec M.J., Kelly N.A., Gruenwald J.M., Corrick K.L., Trump J.R., Singh J.A. Muscle inflammation susceptibility: A prognostic index of recovery potential after hip arthroplasty? Am. J. Physiol. Endocrimol. Metab. 2015;308:E670–E679. doi: 10.1152/ajpendo.00576.2014.
    1. Calder P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients. 2010;2:355–374. doi: 10.3390/nu2030355.
    1. Burd N.A., Gorissen S.H., van Loon L.J.C. Anabolic resistance of muscle protein synthesis with aging. Exerc. Sport Sci. Rev. 2013;41:169–173. doi: 10.1097/JES.0b013e318292f3d5.
    1. Irving B.A., Robinson M.M., Nair K.S. Age effect on myocellular remodelling: Response to exercise and nutrition in humans. Ageing Res. Rev. 2012;11:374–389. doi: 10.1016/j.arr.2011.11.001.
    1. Bell K.E., Von Allmen M.T., Devries M.C., Phillips S.M. Muscle disuse as a pivotal problem in sarcopenia-related muscle loss and dysfunction. J. Frailty Aging. 2016;5:33–41.
    1. Wall B.T., Morton J.P., Van Loon L.J.C. Strategies to maintain skeletal muscle mass in the injured athlete: Nutritional considerations and exercise mimetics. Eur. J. Sport Sci. 2015;15:53–62. doi: 10.1080/17461391.2014.936326.
    1. Greig C.A., Gray C., Rankin D., Young A., Mann V., Noble B., Atherton P.J. Blunting of adaptive responses to resistance exercise training in women over 75y. Exp. Gerontol. 2011;46:884–890. doi: 10.1016/j.exger.2011.07.010.
    1. Carli F., Scheede-Bergdahl C. Prehabilitation to enhance perioperative care. Anaesthesiol. Clin. 2015;33:17–33. doi: 10.1016/j.anclin.2014.11.002.
    1. Tipton K.D., Wolfe R.R. Exercise, protein metabolism, and muscle growth. Int. J. Sport Nutr. Exerc. Metab. 2001;11:109–132. doi: 10.1123/ijsnem.11.1.109.
    1. Finger D., Goltz F.R., Umpierre D., Meyer E., Rosa L.H., Schneider C.D. Effects of protein supplementation in older adults undergoing resistance training: A systematic review and meta-analysis. Sports Med. 2015;45:245–255. doi: 10.1007/s40279-014-0269-4.
    1. Bell K.E., Snijders T., Zulyniak M., Kumbhare D., Parise G., Chabowski A., Phillips S.M. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial. PLoS ONE. 2017;12:e0181387. doi: 10.1371/journal.pone.0181387.
    1. Bell K.E., Snijders T., Zulyniak M.A. A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men. Appl. Physiol. Nutr. Metab. 2017;43:299–302. doi: 10.1139/apnm-2017-0533.
    1. Pennings B., Koopman R., Beelen M., Senden J.M., Saris W.H. Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo protein synthesis in both young and elderly men. Am. J. Clin. Nutr. 2011;93:322–331. doi: 10.3945/ajcn.2010.29649.
    1. Burd N.A., West D.W.D., Moore D.R., Atherton P.J., Staples A.W., Prior T., Tang J.E., Rennie M.J., Baker S.K., et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J. Nutr. 2011;141:568–573. doi: 10.3945/jn.110.135038.
    1. Deutz N.E., Pereira S.L., Hays N.P., Oliver J.S., Edens N.K., Evans C.M., Wolfe R.R. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013;32:704–712. doi: 10.1016/j.clnu.2013.02.011.

Source: PubMed

3
Se inscrever