GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization

E Scott Halstead, Todd M Umstead, Michael L Davies, Yuka Imamura Kawasawa, Patricia Silveyra, Judie Howyrlak, Linlin Yang, Weichao Guo, Sanmei Hu, Eranda Kurundu Hewage, Zissis C Chroneos, E Scott Halstead, Todd M Umstead, Michael L Davies, Yuka Imamura Kawasawa, Patricia Silveyra, Judie Howyrlak, Linlin Yang, Weichao Guo, Sanmei Hu, Eranda Kurundu Hewage, Zissis C Chroneos

Abstract

Background: Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established.

Methods: Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi.

Results: Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ).

Conclusions: Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.

Keywords: Alveolar; Exudative; GM-CSF; Influenza; Interferon; Macrophage; Pneumonia; RNA-seq.

Conflict of interest statement

Ethics approval and consent to participate

All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Pennsylvania State University College of Medicine under protocols #43629 and 47,450, and were cared for as previously described [11]. The regulation of the use of mice in research falls under the Public Health Service Policy on Humane Care and Use of Laboratory Animals (PHS Policy), and is enforced by The Office of Laboratory Animal Welfare (OLAW) under Assurance number A3045-01. In order to comply with the PHS Policy, our institution adheres to the US Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research and Training and the Guide for the Care and Use of Laboratory Animals 8th Edition [72].

Consent for publication

Not applicable, the authors agree to pay the journal processing fee should the manuscript be accepted for publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Therapeutic model of GM-CSF during IAV infection using an inducible airway GM-CSF over-expression transgenic mouse model, and effects on survival and body mass during IAV infection. To simulate a therapeutic model of GM-CSF administration doxycycline was administered to both DTGM and LM control mice starting 3 days after i.n. infection with PR8 IAV. Doxycycline-containing water was protected from light and changed every three days (a). DTGM (n = 23, red circles/lines) and LM control (n = 15, black squares/lines) mice were administered approximately 2 LD50 of IAV PR8 virus i.n. and administered doxycycline in water starting on +3 dpi, and the effects on survival and body weight are shown. Mice were euthanized if they lost >30% body weight and were moribund. GM-CSF over-expression (DTGM mice) conferred a significant survival benefit (b) but not a significant effect on weight loss/recovery (c) as compared to wild-type levels (LM mice). Results shown represent three independent experiments (**p < 0.005)
Fig. 2
Fig. 2
Effects of supra-physiologic levels of GM-CSF on lung mechanical properties during IAV infection. Pressure-volume (PV) curves showing the mean±SEM of lung volume (mL) of each group, LM (black) and DTGM (red) at each indicated preprogramed pressure (cmH2O) at 7 dpi (a) and at 10 dpi (b)(n = 5-9 mice per group per time point). The PV curves of uninfected mice (gray) are shown on each graph for comparison. Shown are the lung mechanical parameters of static compliance (Cst, mL*cmH2O−1)(c), total respiratory system resistance (Rrs, cmH2O*s−1*mL−1)(d), tissue damping or peripheral airway resistance (G, cmH2O*s−1*mL−1)(e),Newtonian or central airway resistance (Rn, cmH2O*s−1*mL−1)(f), and the curvature of the deflation limb of the PV curve (K, cmH2O−1)(g). Results shown represent three independent experiments, n = 4-10 mice per group per time point (*p < 0.05)
Fig. 3
Fig. 3
Effects of supra-physiologic levels of GM-CSF on bronchoalveolar lavage fluid content and influenza A virus load. BAL fluid was recovered from mice at indicated time points after IAV infection and total protein (a) was measured by BCA assay, while BAL concentrations of alpha-2-macroglobulin (b) and amphiregulin (c) levels were quantitated by ELISA. The number of influenza A virus matrix protein (M1) transcripts was quantitated from whole lung by RT-PCR (d). Results shown represent three independent experiments (*p < 0.05, ***p < 0.0005)
Fig. 4
Fig. 4
Flow cytometric discrimination of alveolar and exudative macrophages by surface marker expression. Representative FACS plots from an IAV-infected LM mouse at 10 dpi, which detail our 12-color flow cytometry gating strategy of single cell suspensions from BAL and enzyme-digested lung (a). Alveolar macrophages (AM) were designated as F4/80+ SiglecF+ CD11bneg/dim, whereas exudative macrophages (EM) were designated as F4/80+ SiglecFneg/dim CD11b+. Supra-physiologic GM-CSF levels during IAV infection had no effect on the absolute number of either airway (BAL-recovered) AM or EM cell numbers at 10 dpi (b)
Fig. 5
Fig. 5
Characterization of the changes in transcriptome patterns of airway macrophages during IAV infection. BAL airway macrophages were sorted using the gating strategy described in Fig. 4a and next generation RNA-sequencing was used to profile the complete transcriptome data of AMs (a, orange bars) and EMs (b, blue bars) at 8 dpi, the time point at which the survival curves diverge (n = 5 mice per group). The effect of supraphysiologic GM-CSF levels on each of the 43,628 sequenced macrophage genes was examined: differential gene expression was determined using with transcripts having a q-value <0.2 being included. The relative expression of each transcript was calculated using the equation, Log2 Expression Ratio (DTGM:LM) = Log2 (X¯ transcriptDTGM) - Log2 (X¯ transcriptLM), and the differential expression of transcripts is shown. To investigate the impact of GM-CSF on M1/M2 macrophage polarization, the Log2 Expression Ratios were plotted against known M1 and M2 macrophage-associated transcripts from AMs (c, d) and EMs (e, f)
Fig. 6
Fig. 6
Effect of GM-CSF overexpression on airway levels of CCL17, CXCL9 and MMP12. Mouse CCL17 (a), CXCL9# (b), and MMP12# (c) were measured by ELISA in BAL fluid from doxycycline-treated LM (black) and DTGM (red) uninfected and IAV-infected (10 dpi) mice. Furthermore, the ratio of CXCL9:CCL17# in each BAL sample was determined to examine the relative effect of supraphysiologic GM-CSF levels on macrophage chemokine polarization (d). Results from three independent experiments. (#Please note the log10 scale, *p < 0.05, **p < 0.005)

References

    1. Ríos FG, Estenssoro E, Villarejo F, Valentini R, Aguilar L, Pezzola D, et al. Lung function and organ dysfunctions in 178 patients requiring mechanical ventilation during the 2009 influenza a (H1N1) pandemic. Crit Care. 2011;15:R201. doi: 10.1186/cc10369.
    1. Hillaire ML, van Trierum SE, Bodewes R, van Baalen CA, van Binnendijk RS, Koopmans MP, et al. Characterization of the human CD8(+) T cell response following infection with 2009 pandemic influenza H1N1 virus. J Virol. 2011;85:12057–12061. doi: 10.1128/JVI.05204-11.
    1. Huang FF, Barnes PF, Feng Y, Donis R, Chroneos ZC, Idell S, et al. GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med. 2011;184:259–268. doi: 10.1164/rccm.201012-2036OC.
    1. Sever-Chroneos Z, Murthy A, Davis J, Florence JM, Kurdowska A, Krupa A, et al. GM-CSF modulates pulmonary resistance to influenza a infection. Antivir Res. 2011;92:319–328. doi: 10.1016/j.antiviral.2011.08.022.
    1. Unkel B, Hoegner K, Clausen BE, Lewe-Schlosser P, Bodner J, Gattenloehner S, et al. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin Invest. 2012;122:3652–3664. doi: 10.1172/JCI62139.
    1. Subramaniam R, Hillberry Z, Chen H, Feng Y, Fletcher K, Neuenschwander P, et al. Delivery of GM-CSF to protect against influenza pneumonia. PLoS One. 2015;10:1–16.
    1. Herrlinger U, Pechan P a, Jacobs a H, Woiciechowski C, Rainov NG, Fraefel C, et al. HSV-1 infected cell proteins influence tetracycline-regulated transgene expression. J Gene Med. 2000;2:379–389. doi: 10.1002/1521-2254(200009/10)2:5<379::AID-JGM126>;2-G.
    1. Hartshorn KL, Collamer M, Auerbach M, Myers JB, Pavlotsky N, Tauber AI. Pavlotsky and a I Tauber information about subscribing to the journal of immunology is online at : METABOLISM. 2016. Effects of influenza a virus on human neutrophil calcium metabolism.
    1. Verhoeven D, Teijaro JR, Farber DL. Pulse-oximetry accurately predicts lung pathology and the immune response during influenza infection. Virology. 2009;390:151–6. 10.1016/j.virol.2009.05.004.
    1. Robichaud A, Fereydoonzad L, Urovitch IB, Brunet J-D. Comparative study of three flexiVent system configurations using mechanical test loads. Exp Lung Res. 2015;41:84–92. doi: 10.3109/01902148.2014.971921.
    1. Yang L, Carrillo M, Wu YM, DiAngelo SL, Silveyra P, Umstead TM, et al. SP-R210 (Myo18A) isoforms as intrinsic modulators of macrophage priming and activation. PLoS One. 2015;10:1–29. 10.1371/journal.pone.0126576.
    1. Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol. 2009;27:455–457. doi: 10.1038/nbt0509-455.
    1. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–515. doi: 10.1038/nbt.1621.
    1. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:1–3. doi: 10.1186/gb-2010-11-10-r106.
    1. Rang A, Will H. The tetracycline-responsive promoter contains functional interferon-inducible response elements. Nucleic Acids Res. 2000;28:1120–1125. doi: 10.1093/nar/28.5.1120.
    1. Gotts JE, Abbott J, Matthay M a. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol. 2014;307:L395–L406. doi: 10.1152/ajplung.00110.2014.
    1. Osborne S, Hogg JC, Wright JL, Coppin C, Paré PD. Exponential analysis of the pressure-volume curve. Correlation with mean linear intercept and emphysema in human lungs. Am Rev Respir Dis. 1988;137:1083–1088. doi: 10.1164/ajrccm/137.5.1083.
    1. Irvin CG, Bates JH. Measuring the lung function in the mouse: the challenge of size. Respir Res. 2003;4:1–9. doi: 10.1186/rr199.
    1. Dellacà RL, Zannin E, Sancini G, Rivolta I, Leone BE, Pedotti A, et al. Changes in the mechanical properties of the respiratory system during the development of interstitial lung edema. Respir Res. 2008;9:51. doi: 10.1186/1465-9921-9-51.
    1. Overgaard CE, Schlingmann B, Dorsainvil White S, Ward C, Fan X, Swarnakar S, et al. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1212–23. 10.1152/ajplung.00042.2014.
    1. Cardani A, Boulton A, Kim TS, Braciale TJ. Alveolar macrophages prevent lethal influenza pneumonia by inhibiting infection of Type-1 alveolar epithelial cells. 2017.
    1. Halstead ES, Chroneos ZC. Lethal influenza infection: is a macrophage to blame? Expert Rev Anti-Infect Ther. 2015;7210 March:1–4.
    1. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science (80- ) 2008;321:691–696. doi: 10.1126/science.1158298.
    1. Van De Paar E, Desmecht D, Garigliany M. Hyporeactivity of alveolar macrophages and higher respiratory cell Permissivity. 2015;35:808–20.
    1. Schneider C, Nobs SP, Heer AK, Kurrer M, Klinke G, van Rooijen N, et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 2014;10:e1004053.
    1. Purnama C, Ng SL, Tetlak P, Aphrilia Y. Transient ablation of alveolar macrophages leads to massive pathology of influenza infection without affecting cellular adaptive immunity. Eur J Immunol. 2014;44(7):2003–12.
    1. Kim HM, Lee Y, Lee K, Kim HS, Cho SW, Van Rooijen N, et al. Alveolar macrophages are indispensable for controlling influenza viruses in lungs of pigs □. J Virol. 2008;82:4265–4274. doi: 10.1128/JVI.02602-07.
    1. Ghoneim HE, Thomas PG, McCullers JA. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J Immunol. 2013;191:1250–1259. doi: 10.4049/jimmunol.1300014.
    1. Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med. 2008;205:3065–3077. doi: 10.1084/jem.20080201.
    1. Clark CR. Tissue macrophage proliferation. 2017. p. i.
    1. Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity. 2001;15:557–567. doi: 10.1016/S1074-7613(01)00218-7.
    1. Jablonski KA, Amici SA, Webb LM, Ruiz-rosado JDD, Popovich PG, Partida-sanchez S, et al. Novel markers to delineate Murine M1 and M2 macrophages. 2015. pp. 5–11.
    1. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado JDD, Popovich PG, Partida-Sanchez S, et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS One. 2015;10:5–11. doi: 10.1371/journal.pone.0145342.
    1. Cole SL, Dunning J, Kok WL, Benam KH, Benlahrech A, Repapi E, et al. M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza. 2009. pp. 1–19.
    1. Lukic A, Larssen P, Fauland A, Samuelsson B, Wheelock CE, Gabrielsson S, et al. GM-CSF– and M-CSF–primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures. FASEB J. 2017;31:fj.201700319R 10.1096/fj.201700319R.
    1. Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol. 2012;188:5752–5765. doi: 10.4049/jimmunol.1103426.
    1. Jaguin M, Houlbert N, Fardel O, Lecureur V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol. 2013;281:51–61. doi: 10.1016/j.cellimm.2013.01.010.
    1. Dalrymple H, Barna BP, Malur A, Malur AG, Kavuru MS, Thomassen MJ. Alveolar macrophages of GM-CSF knockout mice exhibit mixed M1 and M2 phenotypes. BMC Immunol. 2013;14:41. doi: 10.1186/1471-2172-14-41.
    1. Mantovani A, Sozzani S, Locati M, Allavena P, Sozzani S, Sica A, et al. Macrophage polarization : tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. 2015.
    1. Nfejdjof JO, Qmbtujdjuz B, Qpmbsj BOE. Mphage_M1-M2_rev_JCI2012. J Clin Invest. 2012;122:787–795. doi: 10.1172/JCI59643.
    1. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6 March:1–13.
    1. Labonte AC, Hahn YS. The role of macrophage polarization in infectious and inflammatory diseases. Moll Cells. 2014;37:275–285. doi: 10.14348/molcells.2014.2374.
    1. Price GE, Gaszewska-mastarlarz A, Moskophidis D. The role of alpha / Beta and Gamma Interferons in development of immunity to influenza a virus in mice. J Virol. 2000;74:3996–4003. doi: 10.1128/JVI.74.9.3996-4003.2000.
    1. Karupiah BG, Chen J, Mahalingam S. Rapid interferon g –dependent clearance of influenza a virus and protection from consolidating Pneumonitis in nitric oxide Synthase 2–deficient mice. 1998;188:1541–6.
    1. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med. 2008;14:558–564. doi: 10.1038/nm1765.
    1. Subramaniam R, Mukherjee S, Chen H, Keshava S, Neuenschwander P, Shams H. Restoring cigarette smoke-induced impairment of efferocytosis in alveolar macrophages. 2015;9:873–83.
    1. Mui AL, Wakao H, Harada N, O’Farrell A, Miyajima A. Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J Leukoc Biol. 1995;57:799–803.
    1. Meads MB, Li Z-W, Dalton WS. A novel TNF receptor-associated factor 6 binding domain mediates NF-kappa B signaling by the common cytokine receptor beta subunit. J Immunol. 2010;185:1606–1615. doi: 10.4049/jimmunol.0902026.
    1. Wang Y, Zhou C, Huo J, Ni Y, Zhang P, Lu C, et al. TRAF6 is required for the GM-CSF-induced JNK, p38 and Akt activation. Mol Immunol. 2015;65:224–229. doi: 10.1016/j.molimm.2015.01.012.
    1. Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266:72–92. doi: 10.1111/imr.12302.
    1. Tisserand J, Khetchoumian K, Thibault C, Dembélé D, Chambon P, Losson R. Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition. J Biol Chem. 2011;286:33369–33379. doi: 10.1074/jbc.M111.225680.
    1. Jain AK, Barton MC. Regulation of p53: TRIM24 enters the RING. Cell Cycle. 2009;8:3668–3674. doi: 10.4161/cc.8.22.9979.
    1. Zhang X, Li CF, Zhang L, Wu CY, Han L, Jin G, et al. TRAF6 restricts p53 mitochondrial translocation, apoptosis, and tumor suppression. Mol Cell. 2016;64:803–814. doi: 10.1016/j.molcel.2016.10.002.
    1. Josset L, Belser JA, Pantin-Jackwood MJ, Chang JH, Chang ST, Belisle SE, et al. Implication of inflammatory macrophages, nuclear receptors, and interferon regulatory factors in increased virulence of pandemic 2009 H1N1 influenza a virus after host adaptation. J Virol. 2012;86:7192–7206. doi: 10.1128/JVI.00563-12.
    1. Bell JL, Malyukova A, Holien JK, Koach J, Parker MW, Kavallaris M, et al. TRIM16 acts as an E3 Ubiquitin Ligase and can Heterodimerize with other TRIM family members. 2012;7:1–9.
    1. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage Elastase for cigarette smoke – induced emphysema in mice. Science. 1997;277:2002–4.
    1. Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM. Macrophage-specific metalloelastase ( MMP-12 ) truncates and inactivates ELR ϩ CXC chemokines and generates CCL2, −7, −8, and −13 antagonists : potential role of the macrophage in terminating polymorphonuclear leukocyte influx. 2017;112:3455–65.
    1. Marchant DJ, Bellac CL, Moraes TJ, Wadsworth SJ, Dufour A, Butler GS, et al. A new transcriptional role for matrix metalloproteinase- 12 in antiviral immunity. Nat Med. 2014;20:499–508. doi: 10.1038/nm.3508.
    1. Bellac CL, Dufour A, Roberts CR, Overall CM, Bellac CL, Dufour A, et al. Macrophage matrix Metalloproteinase-12 dampens inflammation and Neutrophil influx in arthritis article macrophage matrix Metalloproteinase-12 dampens inflammation and Neutrophil influx in arthritis. Cell Rep. 2014;9:618–632. doi: 10.1016/j.celrep.2014.09.006.
    1. Nelson MP, Christmann BS, Dunaway CW, Morris A, Steele C, Mp N, et al. Experimental Pneumocystis lung infection promotes M2a alveolar macrophage-derived MMP12 production. 2012. pp. 6–8.
    1. Minutti CM, Minutti CM, Jackson-jones LH, García-fojeda B, Knipper JA, Tara E, et al. Local amplifiers of IL-4R α – mediated macrophage activation promote repair in lung and liver. 2017.
    1. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, et al. Origin of the lamina Propria Dendritic cell network. Immunity. 2009;31:513–525. doi: 10.1016/j.immuni.2009.08.010.
    1. Becher UM, Möller L, Tiyerili V, Vasa Nicotera M, Hauptmann F, Zimmermann K, et al. Distinct CD11b+−monocyte subsets accelerate endothelial cell recovery after acute and chronic endothelial cell damage. Int J Cardiol. 2014;173:80–91. doi: 10.1016/j.ijcard.2014.02.004.
    1. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, et al. Intestinal lamina Propria Dendritic cell subsets have different origin and functions. Immunity. 2009;31:502–512. doi: 10.1016/j.immuni.2009.06.025.
    1. Kingston D, Schmid M a, Onai N, Obata-onai A, Baumjohann D, Markus G, et al. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis the concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. 2009;114:835–43.
    1. Huffman Reed J a, Rice WR, Zsengellér ZK, Wert SE, Dranoff G, Whitsett JA, et al. GM-CSF enhances lung growth and causes alveolar type II epithelial cell hyperplasia in transgenic mice. Am J Phys. 1997;273:L715–L725.
    1. Herold S, Hoegner K, Vadazs Z, Gessler T, Wilhelm J, Mayer K, et al. Inhaled granulocyte/macrophage Colony–stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:609–611. doi: 10.1164/rccm.201311-2041LE.
    1. Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25:405–428. doi: 10.1615/CritRevImmunol.v25.i5.50.
    1. Hercus T, Thomas D. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood. 2009;114 August:1289–1298. doi: 10.1182/blood-2008-12-164004.
    1. Van De Laar L, Coffer PJ, Woltman AM. Regulation of dendritic cell development by GM-CSF : molecular control and implications for immune homeostasis and therapy. Blood. 2016;119:3383–3394. doi: 10.1182/blood-2011-11-370130.
    1. Louis C, Cook AD, Lacey D, Fleetwood AJ, Vlahos R, Anderson GP, et al. Specific contributions of CSF-1 and GM-CSF to the dynamics of the mononuclear phagocyte system. J Immunol. 2015;195:134–144. doi: 10.4049/jimmunol.1500369.
    1. Guide for the Care and Use of Laboratory Animals. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC); 2011.

Source: PubMed

3
Se inscrever