Oxidative stress in obesity: a critical component in human diseases

Lucia Marseglia, Sara Manti, Gabriella D'Angelo, Antonio Nicotera, Eleonora Parisi, Gabriella Di Rosa, Eloisa Gitto, Teresa Arrigo, Lucia Marseglia, Sara Manti, Gabriella D'Angelo, Antonio Nicotera, Eleonora Parisi, Gabriella Di Rosa, Eloisa Gitto, Teresa Arrigo

Abstract

Obesity, a social problem worldwide, is characterized by an increase in body weight that results in excessive fat accumulation. Obesity is a major cause of morbidity and mortality and leads to several diseases, including metabolic syndrome, diabetes mellitus, cardiovascular, fatty liver diseases, and cancer. Growing evidence allows us to understand the critical role of adipose tissue in controlling the physic-pathological mechanisms of obesity and related comorbidities. Recently, adipose tissue, especially in the visceral compartment, has been considered not only as a simple energy depository tissue, but also as an active endocrine organ releasing a variety of biologically active molecules known as adipocytokines or adipokines. Based on the complex interplay between adipokines, obesity is also characterized by chronic low grade inflammation with permanently increased oxidative stress (OS). Over-expression of oxidative stress damages cellular structures together with under-production of anti-oxidant mechanisms, leading to the development of obesity-related complications. The aim of this review is to summarize what is known in the relationship between OS in obesity and obesity-related diseases.

Figures

Figure 1
Figure 1
Underlying pathophysiological mechanisms of cancer susceptibility in obese patients.

References

    1. Sikaris K. The clinical biochemistry of obesity. Clin. Biochem. Rev. 2004;25:165–181.
    1. Alberti K.G., Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998;15:539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S.
    1. Freedman D., Wang J., Thornton J.C., Mei Z., Sopher A.B., Pierson R.N., Jr, Dietz W.H., Horlick M. Classification of body fatness by body mass index-for-age categories among children. Arch. Pediatr. Adolesc. Med. 2009;163:801–811. doi: 10.1001/archpediatrics.2009.104.
    1. Office of the Surgeon General . The Surgeon General’s Vision for a Healthy and Fit Nation. External Web Site Icon.; Rockville, MD, USA: 2010.
    1. Xu H., Barnes G.T., Yang Q., Tan G., Yang D., Chou C.J., Sole J., Nichols A., Ross J.S., Tartaglia L.A., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003;112:1821–1830. doi: 10.1172/JCI200319451.
    1. Cristancho A.G., Lazar M.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011;12:722–734. doi: 10.1038/nrm3198.
    1. Fernández-Sánchez A., Madrigal-Santillán E., Bautista M., Esquivel-Soto J., Morales-González A., Esquivel-Chirino C., Durante-Montiel I., Sánchez-Rivera G., Valadez-Vega C., Morales-González J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011;12:3117–3132. doi: 10.3390/ijms12053117.
    1. Hensley K., Robinson K.A., Gabbita S.P., Salsman S., Floyd R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000;28:1456–1462. doi: 10.1016/S0891-5849(00)00252-5.
    1. Redman C.W., Sargent I.L. Pre-eclampsia, the placenta and the maternal systemicinflammatory respons—A review. Placenta. 2003;24:21–27. doi: 10.1053/plac.2002.0930.
    1. Fonseca-Alaniz M.H., Takada J., Alonso-Vale M.I., Lima F.B. Adipose tissue as an endocrine organ: From theory to practice. J. Pediatr. 2007;83:192–203. doi: 10.1590/S0021-75572007000700011.
    1. Chandel N.S., Schumacker P.T., Arch R.H. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J. Biol. Chem. 2001;276:42728–42736. doi: 10.1074/jbc.M103074200.
    1. Wang B., Trayhurn P. Acute and prolonged effects of TNF-α on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflüg. Arch. 2006;452:418–427. doi: 10.1007/s00424-006-0055-8.
    1. Stienstra R., Tack C.J., Kanneganti T.D., Joosten L.A., Netea M.G. The inflammasome puts obesity in the danger zone. Cell Metab. 2012;15:10–18. doi: 10.1016/j.cmet.2011.10.011.
    1. Naugler W.E., Karin M. The wolf in sheep’s clothing: The role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 2008;14:109–119. doi: 10.1016/j.molmed.2007.12.007.
    1. Curti M.L.R., Borges P., Rogero M.C., Ferreira S.R. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: Implications for a nutrigenetic approach. J. Obes. 2011;2011:1–30. doi: 10.1155/2011/497401.
    1. Stenlöf K., Wernstedt I., Fjällman T., Wallenius V., Wallenius K., Jansson J.O. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J. Clin. Endocrinol. Metab. 2003;88:4379–4383. doi: 10.1210/jc.2002-021733.
    1. Lavrovsky Y., Chatterjee B., Clark R.A., Roy A.K. Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp. Gerontol. 2000;35:521–532. doi: 10.1016/S0531-5565(00)00118-2.
    1. Shoelson S.E., Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–2180. doi: 10.1053/j.gastro.2007.03.059.
    1. Bedard K., Krause K.H. The NOX family of ROS generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005.
    1. Frossi B., de Carli M., Daniel K.C., Rivera J., Pucillo C. Oxidative stress stimulates IL-4 and IL-6 production in mast cells by an APE/Ref-1-dependent pathway. Eur. J. Immunol. 2003;33:2168–2177. doi: 10.1002/eji.200323995.
    1. Han C.Y., Umemoto T., Omer M. NADPH oxidase derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J. Biol. Chem. 2012;287:10379–10393. doi: 10.1074/jbc.M111.304998.
    1. Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 2011;51:1289–1301. doi: 10.1016/j.freeradbiomed.2011.06.033.
    1. Dikalova A.E., Bikineyeva A.T., Budzyn K., Nazarewicz R.R., McCann L., Lewis W., Harrison D.G., Dikalov S.I. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 2010;107:106–116.
    1. Amirkhizi F., Siassi F., Minaie S., Djalali M., Rahimi A., Chamari M. Is obesity associated with increased plasma lipid peroxidación and oxidative stress in women. ARYA Atheroscler. J. 2007;2:189–192.
    1. Ozata M., Mergen M., Oktenli C., Aydin A., Sanisoglu S.Y., Bolu E., Yilmaz M.I., Sayal A., Isimer A., Ozdemir I.C. Increased oxidative stress and hypozincemia in male obesity. Clin. Biochem. 2002;35:627–631. doi: 10.1016/S0009-9120(02)00363-6.
    1. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004;114:1752–1761. doi: 10.1172/JCI21625.
    1. Rzheshevsky A.V. Fatal “Triad”: Lipotoxicity, oxidative stress, and phenoptosis. Biochemistry. 2013;78:991–1000.
    1. Tereshin E.V. A role of fatty acids in the development of oxidative stress in aging. A hypothesis. Adv. Gerontol. 2007;20:59–65.
    1. Duvnjak M., Lerotic I., Barsic N., Tomasic V., Virovic Jukic L., Velagic V. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J. Gastroenterol. 2007;13:4539–4550.
    1. Goossens G.H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 2008;94:206–218. doi: 10.1016/j.physbeh.2007.10.010.
    1. Khan N., Naz L., Yasmeen G. Obesity: An independent risk factor systemic oxidative stress. Pak. J. Pharm. Sci. 2006;19:62–69.
    1. Hukshorn C.J., Lindeman J.H., Toet K.H., Saris W.H., Eilers P.H., Westerterp-Plantenga M.S., Kooistra T. Leptin and the proinflammatory state associated with human obesity. J. Clin. Endocrinol. Metab. 2004;89:1773–1778. doi: 10.1210/jc.2003-030803.
    1. Ferri C., Desideri G., Valenti M., Bellini C., Pasin M., Santucci A., de Mattia G. Early up-regulation of endothelial adhesion molecules in obese hypertensive men. Hypertension. 1999;34:568–573. doi: 10.1161/01.HYP.34.4.568.
    1. Fantuzzi G., Faggioni R. Leptin in the regulation of immunity, inflammation, and haematopoiesis. J. Leukoc. Biol. 2000;68:437–446.
    1. Deng Y., Scherer P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2010;1212:E1–E19. doi: 10.1111/j.1749-6632.2010.05875.x.
    1. Ouedraogo R., Gong Y., Berzins B., Wu X., Mahadev K., Hough K., Chan L., Goldstein B.J., Scalia R. Adiponectin deficiency increases leukocyte-endothelium interactions via up-regulation of endothelial cell adhesion molecules in vivo. J. Clin. Investig. 2007;117:1718–1761. doi: 10.1172/JCI29623.
    1. Fujita K., Nishizawa H., Funahashi T., Shimomura I., Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circulation. 2006;70:1437–1442. doi: 10.1253/circj.70.1437.
    1. Beltowski J. Apelin and visfatin: Unique beneficial adipokines up-regulated in obesity? Med. Sci. Monit. 2006;12:112–119.
    1. Marseglia L., Manti S., D’Angelo G., Cuppari C., Salpietro V., Filippelli M., Chirico V., Gitto E., Salpietro C., Arrigo T. The role of visfatin in pregnancy, complications and procreation. J. Pediatr. Biochem. 2014 in press.
    1. Martos-Moreno G.A., Kratzsch J., Korner A., Barrios V., Hawkins F., Kiess W., Argente J. Serum visfatin and vaspin levels in prepubertal children: Effect of obesity and weight loss after behavior modifications on their secretion and relationship with glucose metabolism. Int. J. Obes. 2011;35:1355–1362. doi: 10.1038/ijo.2010.280.
    1. Moschen A.R., Kaser A., Enrich B., Mosheimer B., Theurl M., Niederegger H., Tilg H. Visfatin an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 2007;178:1748–1758. doi: 10.4049/jimmunol.178.3.1748.
    1. Kim S.R., Bae Y.H., Bae S.K., Choi K.S., Yoon K.H., Koo T.H., Jang H.O., Yun I., Kim K.W., Kwon Y.G., et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κB activation in endothelial cells. Biochim. Biophys. Acta. 2008;1783:886–895. doi: 10.1016/j.bbamcr.2008.01.004.
    1. Kawanami D., Maemura K., Takeda N., Harada T., Nojiri T., Imai Y., Manabe I., Utsunomiya K., Nagai R. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: A new insight into adipocytokine-endothelial cell interactions. Biochem. Biophys. Res. Commun. 2004;314:415–419. doi: 10.1016/j.bbrc.2003.12.104.
    1. Chen C., Jiang J., Lü J.M., Chai H., Wang X., Lin P.H., Yao Q. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2010;299:193–201. doi: 10.1152/ajpheart.00431.2009.
    1. Than A., Zhang X., Leow M.K., Poh C.L., Chong S.K., Chen P. Apelin attenuates oxidative stress in human adipocytes. J. Biol. Chem. 2014;289:3763–3774. doi: 10.1074/jbc.M113.526210.
    1. Pisarenko O.I., Bespalova ZhD., Lankin V.Z., Timoshin A.A., Serebriakova L.I., Shulzhenko V.S., Pelogeikina IuA., Studneva I.M., Tskitishvili O.V., Azmuko A.A., et al. Antioxidant properties of apelin-12 and its structural analogue in experimental ischemia and reperfusion. Kardiologiia. 2013;53:61–67.
    1. Gottschling-Zeller H., Birgel M., Rohrig K., Hauner H. Effect of tumor necrosis factor α and transforming growth factor β 1 on plasminogen activator inhibitor-1 secretion from subcutaneous and omental human fat cells in suspension culture. Metabolism. 2000;49:666–671. doi: 10.1016/S0026-0495(00)80046-3.
    1. To M., Takagi D., Akashi K., Kano I., Haruki K., Barnes P.J., Ito K. Sputum plasminogen activator inhibitor-1 elevation by oxidative stress-dependent nuclear factor-κB activation in COPD. Chest. 2013;144:515–521. doi: 10.1378/chest.12-2381.
    1. Samarakoon R., Overstreet J.M., Higgins S.P., Higgins P.J. TGF-β1→SMAD/p53/USF2→PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res. 2012;347:117–128. doi: 10.1007/s00441-011-1181-y.
    1. Vulin A.I., Stanley F.M. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J. Biol. Chem. 2004;279:25172–25178. doi: 10.1074/jbc.M403184200.
    1. De Taeye B., Smith L.H., Vaughan D.E. Plasminogen activator inhibitor-1: A common denominator in obesity, diabetes and cardiovascular disease. Curr. Opin. Pharmacol. 2005;5:149–154. doi: 10.1016/j.coph.2005.01.007.
    1. Chen B., Lam K.S., Wang Y., Wu D., Lam M.C., Shen J., Wong L., Hoo R.L., Zhang J., Xu A. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem. Biophys. Res. Commun. 2006;341:549–556. doi: 10.1016/j.bbrc.2006.01.004.
    1. Pihl E., Zilmer K., Kullisaar T., Kairane C., Magi A., Zilmer M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Int. J. Obes. 2006;30:141–146. doi: 10.1038/sj.ijo.0803068.
    1. Chrysohoou C., Panagiotakos D.B., Pitsavos C., Skoumas I., Papademetriou L., Economou M., Stefanadis C. The implication of obesity on total antioxidant capacity apparently healthy men and women: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2007;17:590–597. doi: 10.1016/j.numecd.2006.05.007.
    1. Alberti K.G.M.M., Zimmet P., Shaw J. The metabolic syndrome—A new worldwide definition. Lancet. 2005;366:1059–1062. doi: 10.1016/S0140-6736(05)67402-8.
    1. Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. Cell. 2001;104:531–543. doi: 10.1016/S0092-8674(01)00240-9.
    1. Klein S., Allison D.B., Heymsfield S.B., Kelley D.E., Leibel R.L., Nonas C., Kahn R. Waist circumference and cardiometabolic risk: A consensus from shaping America’s health: Association for weight management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and American Diabetes Association. Am. J. Clin. Nutr. 2007;30:1647–1652.
    1. Juge-Aubry C.E., Henrichot E., Meier C.A. Adipose tissue: A regulator of inflammation. J. Clin. Endocrinol. Metab. 2005;19:547–566.
    1. Sabio G., Das M., Mora A., Zhang Z., Jun J.Y., Ko H.J., Barrett T., Kim J.K., Davis R.J. A stress signalling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322:1539–1543. doi: 10.1126/science.1160794.
    1. Rosenbaum M., Sy M., Pavlovich K., Leibel R.L, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J. Clin. Investig. 2008;118:2583–2591.
    1. Maury E., Brichard S.M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell Endocrinol. 2010;314:1–16. doi: 10.1016/j.mce.2009.07.031.
    1. Imai S.I. Nicotinamide phosphoribosyltransferase (Nampt): A link between NAD biology, metabolism, and diseases. Curr. Pharm. Des. 2009;15:20–28. doi: 10.2174/138161209787185814.
    1. Lago F., Dieguez C., G´omez-Reino G., Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nat. Clin. Pract. Rheumatol. 2007;3:716–724. doi: 10.1038/ncprheum0674.
    1. Grundy S.M. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2005;109:433–438. doi: 10.1161/01.CIR.0000111245.75752.C6.
    1. Matsuoka T. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Investig. 1997;99:144–150. doi: 10.1172/JCI119126.
    1. Maddux B.A. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of α-lipoic acid. Diabetes. 2001;50:404–410. doi: 10.2337/diabetes.50.2.404.
    1. Rudich A. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998;47:1562–1569. doi: 10.2337/diabetes.47.10.1562.
    1. Hopps E., Noto D., Caimi G., Averna M.R. A novel comoponent of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010;20:72–77. doi: 10.1016/j.numecd.2009.06.002.
    1. Grattagliano I., Palmieri V.O., Portincasa P., Moschetta A., Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: A unifying hyopothesis. J. Nutr. Biochem. 2008;19:491–504. doi: 10.1016/j.jnutbio.2007.06.011.
    1. Ford E.S., Mokdad A.H., Giles W.H., Brown D.W. The metabolic syndrome and antioxidant concentrations: Findings from the Third National Health and Nutrition Examination Survey. Diabetes. 2003;52:2346–2352. doi: 10.2337/diabetes.52.9.2346.
    1. Mullarkey C.J., Edelstein D., Brownee M. Free radical generation by early glycation products: A mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 1990;173:932–939. doi: 10.1016/S0006-291X(05)80875-7.
    1. Poitout V., Robertson R.P. Glucolipotoxicity: Fuel excess and β-cell dysfunction. Endocr. Rev. 2008;29:351–366. doi: 10.1210/er.2007-0023.
    1. Inoguchi T., Li P., Umeda F., Yu H.Y., Kakimoto M., Imamura M., Aoki T., Etoh T., Hashimoto T., Naruse M., et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–1945. doi: 10.2337/diabetes.49.11.1939.
    1. Kuboki K., Jiang Z.Y., Takahara N., Ha S.W., Igarashi M., Yamauchi T., Feener E.P., Herbert T.P., Rhodes C.J., King G.L. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: A specific vascular action of insulin. Circulation. 2000;101:676–681. doi: 10.1161/01.CIR.101.6.676.
    1. Ganz M.B., Seftel A. Glucose-induced changes in protein kinase Cand nitric oxide are prevented by vitamin E. Am. J. Physiol. Endocrinol. Metab. 2000;278:146–152.
    1. Ha H., Yu M.R., Choi Y.J., Kitamura M., Lee H.B. Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J. Am. Soc. Nephrol. 2002;13:894–902.
    1. Yamagishi S., Maeda T., Matsui S., Ueda S., Fukami K., Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. Biophys. Acta. 2012;1820:663–671. doi: 10.1016/j.bbagen.2011.03.014.
    1. Kristina I.R. Diabetes treatment—Bridging the divide. N. Engl. J. Med. 2007;356:1499–1501. doi: 10.1056/NEJMp078030.
    1. Paneni F., Costantino S., Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr. Atheroscler. Rep. 2014;16:419. doi: 10.1007/s11883-014-0419-z.
    1. Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002;23:599–622. doi: 10.1210/er.2001-0039.
    1. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54:1615–1625. doi: 10.2337/diabetes.54.6.1615.
    1. Trumpower B.L. The protonmotive Q cycle: Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 1990;265:11409–11412.
    1. Pitocco D., Tesauro M., Alessandro R., Ghirlanda G., Cardillo C. Oxidative stress in diabetes: Implications for vascular and other complications. Int. J. Mol. Sci. 2013;14:21525–21550. doi: 10.3390/ijms141121525.
    1. Wang C.H., Huang H., Wei Y. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J. 2013;280:1039–1050. doi: 10.1111/febs.12096.
    1. Sakai K., Matsumoto K., Nishikawa T., Suefuji M., Nakamaru K., Hirashima Y., Kawashima J., Shirotani T., Ichinose K., Brownlee M., et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells. Biochem. Biophys. Res. Commun. 2003;300:216–222. doi: 10.1016/S0006-291X(02)02832-2.
    1. Pi J., Bai Y., Zhang Q., Wong V., Floering L.M., Daniel K., Reece J.M., Deeney J.T., Andersen M.E., Corkey B.E., Collins S. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56:1783–1791. doi: 10.2337/db06-1601.
    1. Pradhan A.D., Manson J.E., Rifai N., Buring J.E., Ridker P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J. Am. Med. Assoc. 2001;286:327–334. doi: 10.1001/jama.286.3.327.
    1. Peraldi P., Spiegelman B. TNF-α and insulin resistance: Summary and future prospects. Mol. Cell. Biochem. 1998;182:169–175. doi: 10.1023/A:1006865715292.
    1. Pickup J.C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813–823. doi: 10.2337/diacare.27.3.813.
    1. Pickup J.C., Chusney G.D., Thomas S.M., Burt D. Plasma interleukin-6, tumour necrosis factor-α and blood cytokine production in type 2 diabetes. Life Sci. 2000;67:291–300. doi: 10.1016/S0024-3205(00)00622-6.
    1. Maedler K., Sergeev P., Ris F., Oberholzer J., Joller-Jemelka H.I., Spinas G.A., Kaiser N., Halban P.A., Donath M.Y. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Investig. 2002;110:851–860. doi: 10.1172/JCI200215318.
    1. Tilg H., Dinarello C.A., Mier J.W. IL-6 and APPs: Anti-inflammatory and immunosuppressive mediators. Immunol. Today. 1997;18:428–432. doi: 10.1016/S0167-5699(97)01103-1.
    1. Larsen C.M., Faulenbach M., Vaag A., Volund A., Ehses J.A., Seifert B., Mandrup-Poulsen T., Donath M.Y. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 2007;356:1517–1526. doi: 10.1056/NEJMoa065213.
    1. Yang J., Kang J., Guan Y. The mechanisms linking adiposopathy to type 2 diabetes. Front. Med. 2013;7:433–444. doi: 10.1007/s11684-013-0288-9.
    1. Bolkent S., Yanardag R., Bolkent S., Doger M.M. Beneficial effects of combined treatment with niacin and chromium on the liver of hyperlipemic rats. Biol. Trace Elem. Res. 2004;101:219–229. doi: 10.1385/BTER:101:3:219.
    1. Yang R.L., Shi Y.H., Hao G. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 2008;43:154–158. doi: 10.3164/jcbn.2008044.
    1. Ceriello A., Taboga C., Tonutti L., Quagliaro L., Piconi L., Bais D., da Ros R., Motz E. Evidence for an independent and cumulativeeffect of postprandial hypertriglyceridemia and hyper-glycemia on endothelial dysfunction and oxidative stressgeneration: Effects of short- and long-term simvastatin treatment. Circulation. 2002;106:1211–1218. doi: 10.1161/01.CIR.0000027569.76671.A8.
    1. Parthasarathy S., Raghavamenon A., Garelnabi M.O., Santanam M. Oxidized low-density lipoprotein. Methods Mol. Biol. 2010;610:403–417.
    1. Nishimura I., Manabe M. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007;56:1517–1526. doi: 10.2337/db06-1749.
    1. Merkel M., Heeren J., Dudeck W., Rinninger F., Radner H., Breslow J.L., Goldberg I.J., Zechner R., Greten H. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J. Biol. Chem. 2002;277:7405–7411. doi: 10.1074/jbc.M107914200.
    1. Gaens K.H., Stehouwer C.D., Schalkwijk C.G. Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr. Opin. Lipidol. 2013;24:4–11. doi: 10.1097/MOL.0b013e32835aea13.
    1. Krzystek-Korpacka M., Patryn E., Hotowy K., Czapinska E., Majda J., Kustrzeba-Wojcicka I., Noczynska A., Gamian A. Paraoxonase (PON)-1 activity in overweight and obese children and adolescents: Association with obesity-related inflammation and oxidative stress. Adv. Clin. Exp. Med. 2013;22:229–236.
    1. Manea A., Simionescu M. Nox enzymes and oxidative stress in atherosclerosis. Front. Biosci. 2012;4:651–670. doi: 10.2741/S291.
    1. Touyz R.M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension. 2004;44:248–252. doi: 10.1161/01.HYP.0000138070.47616.9d.
    1. Redon J., Oliva M.R., Tormos C., Giner V., Chaves J., Iradi A., Saez G.T. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension. 2003;41:1096–1101. doi: 10.1161/01.HYP.0000068370.21009.38.
    1. Pedro-Botet J., Covas M.I., Martin S., Rubies-Prat J. Decreased endogenous antioxidant enzymatic status in essential hypertension. J. Hum. Hypertens. 2000;14:343–345. doi: 10.1038/sj.jhh.1001034.
    1. Parmer R.J., Lacy F., Kailasam M.T., O’Connor D.T., Schmid-Schonbein G.W., Parmer R.J. Plasma hydrogen peroxide production in human essential hypertension: Role of heredity, gender, and ethnicity. Hypertension. 2000;36:878–884. doi: 10.1161/01.HYP.36.5.878.
    1. Lip G.Y., Edmunds E., Nuttall S.L., Landray M.J., Blann A.D., Beevers D.G. Oxidative stress in malignant and non-malignant phase hypertension. J. Hum. Hypertens. 2002;16:333–336. doi: 10.1038/sj.jhh.1001386.
    1. Landsberg L., Aronne L.J., Beilin L.J., Burke V., Igel L.I., LIoyd-Jones D., Sowers J. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment: A position paper of The Obesity Society and the American Society of Hypertension. J. Clin. Hypertens. 2013;15:14–33. doi: 10.1111/jch.12049.
    1. Zhang X., Dong F., Ren J., Driscoll M.L., Culver B. High dietary fat induces NADPH oxidase-associated oxidativestress and inflammation in rat cerebral cortex. Exp. Neurol. 2005;191:318–225. doi: 10.1016/j.expneurol.2004.10.011.
    1. Nagae A., Fujita M., Kawarazaki H., Matsui H., Ando K., Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009;119:978–986. doi: 10.1161/CIRCULATIONAHA.108.824730.
    1. Ferrante AW. Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. J. Intern. Med. 2007;262:408–414. doi: 10.1111/j.1365-2796.2007.01852.x.
    1. Miyake T., Kumagi T., Hirooka M., Furukawa S., Kawasaki K., Koizumi M., Todo Y., Yamamoto S., Nunoi H., Tokumoto Y., et al. Significance of exercise in nonalcoholic fatty liver disease in men: A community-based large cross-sectional study. J. Gastroenterol. 2014 in press.
    1. Tiniakos D.G., Vos M.B., Brunt E.M. Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu. Rev. Pathol. 2010;5:145–171. doi: 10.1146/annurev-pathol-121808-102132.
    1. Neuschwander-Tetri B.A., Caldwell S.H. Nonalcoholic steatohepatitis: Summary of an AASLD Single Topic Conference. Hepatology. 2003;37:1202–1219. doi: 10.1053/jhep.2003.50193.
    1. Başaranoğlu M., Örmeci N. Nonalcoholic fatty liver disease: Diagnosis, pathogenesis, and management. Turk. J. Gastroenterol. 2014;25:127–132. doi: 10.5152/tjg.2014.7675.
    1. Rolo A.P., Teodoro J.S., Palmeira C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2012;52:59–69. doi: 10.1016/j.freeradbiomed.2011.10.003.
    1. Takaki A., Kawai D., Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH) Int. J. Mol. Sci. 2013;14:20704–20728. doi: 10.3390/ijms141020704.
    1. Nelson J.E., Klintworth H., Kowdley K.V. Iron metabolism in nonalcoholic fatty liver disease. Curr. Gastroenterol. Rep. 2012;14:8–16. doi: 10.1007/s11894-011-0234-4.
    1. Nikonorov A.A., Skalnaya M.G., Tinkov A.A., Skalny A.V. Mutual interaction between iron homeostasis and obesity pathogenesis. J. Trace Elem. Med. Biol. 2014 in press.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., MAgrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Seki S. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 2002;37:56–62. doi: 10.1016/S0168-8278(02)00073-9.
    1. Takaki A., Kawai D., Yamamoto K. Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH) Int. J. Mol. Sci. 2014;15:7352–7379. doi: 10.3390/ijms15057352.
    1. Jarrar M.H., Baranova A., Collantes R., Ranard B., Stepanova M., Bennet C., Fang Y., Elariny H., Goodman Z., Chandhoke V., et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2008;27:412–421. doi: 10.1111/j.1365-2036.2007.03586.x.
    1. Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J., Shoelson S.E. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 2005;11:183–190. doi: 10.1038/nm1166.
    1. Manti S., Marseglia L., D’Angelo G., Filippelli M., Cuppari C., Gitto E., Romano C., Arrigo T., Salpietro C. Portal hypertension as immune mediate disease. Hepat. Mon. 2014;14:e18625.
    1. Basaranoglu M., Kayacetin S., Yilmaz N., Kayacetin E., Tarcin O., Sonsuz A. Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease. World J. Gastroenterol. 2010;16:2223–2226. doi: 10.3748/wjg.v16.i18.2223.
    1. Renehan A.G., Tyson M., Egger M., Heller R.F., Zwahlen M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–578. doi: 10.1016/S0140-6736(08)60269-X.
    1. Laiyemo A.O. The risk of colonic adenomas and colonic cancer in obesity. Best Pract. Res. Clin. Gastroenterol. 2014;28:655–663. doi: 10.1016/j.bpg.2014.07.007.
    1. Bouchard C., Tremblay A. Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J. Nutr. 1997;127:943–947.
    1. Bhaskaran K., Douglas I., Forbes H., dos-Santos-Silva I., Leon D.A., Smeeth L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5.24 million UK adults. Lancet. 2014;384:755–765. doi: 10.1016/S0140-6736(14)60892-8.
    1. Yang X., Deignan J.L., Qi H., Zhu J., Qian S., Zhong J., Torosyan G., Majid S., Falkard B., Kleinhanz R.R., et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat. Genet. 2009;41:415–423. doi: 10.1038/ng.325.
    1. Gulati P., Cheung M.K., Antrobus R., Church C.D., Harding H.P., Tung Y.C., Rimmington D., Ma M., Ron D., Lehner P.J., et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc. Natl. Acad. Sci. USA. 2013;110:2557–2562. doi: 10.1073/pnas.1222796110.
    1. Vongsuvanh R., George J., Qiao L., van der Poorten D. Visceral adiposity in gastrointestinal and hepatic carcinogenesis. Cancer Lett. 2013;330:1–10. doi: 10.1016/j.canlet.2012.11.038.
    1. El Yafi F., Winkler R., Delvenne P., Boussif N., Belaiche J., Louis E. Altered expression of type I insulin-like growth factor receptor in Crohn’s disease. Clin. Exp. Immunol. 2005;139:526–533. doi: 10.1111/j.1365-2249.2004.02724.x.
    1. Van Goudoever J.B., Corpeleijn W., Riedijk M., Schaart M., Renes I., van der Schoor S. The impact of enteral insulin-like growth factor 1 and nutrition on gut permeability and amino acid utilization. J. Nutr. 2008;138:1829–1833.
    1. Demark-Wahnefried W., Platz E.A., Ligibel J.A., Blair C.K., Courneya K.S., Meyerhardt J.A., Ganz P.A., Rock C.L., Schmitz K.H., Wadden T., et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol. Biomark. Prev. 2012;21:1244–1259. doi: 10.1158/1055-9965.EPI-12-0485.
    1. Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010;72:219–246. doi: 10.1146/annurev-physiol-021909-135846.
    1. Feuerer M., Herrero L., Cipolletta D., Naaz A., Wong J., Nayer A., Lee J., Goldfine A.B., Benoist C., Shoelson S., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009;15:930–939. doi: 10.1038/nm.2002.
    1. Cerdá C., Sánchez C., Climent B., Vázquez A., Iradi A., el Amrani F., Bediaga A., Sáez G.T. Oxidative stress and DNA damage in obesity-related tumorigenesis. Adv. Exp. Med. Biol. 2014;824:5–17.
    1. Dubois V., Jarde T., Delort L., Billard H., Bernard-Gallon D., Berger E., Geloen A., Vasson M.P., Caldefie-Chezet F. Leptin induces a proliferative response in breast cancer cells but not in normal breast cells. Nutr. Cancer. 2014;66:645–655. doi: 10.1080/01635581.2014.894104.
    1. Allott E.H., Masko E.M., Freedland S.J. Obesity and prostate cancer: Weighing the evidence. Eur. Urol. 2013;63:800–809. doi: 10.1016/j.eururo.2012.11.013.
    1. Cheng S.P., Yin P.H., Chang Y.C., Lee C.H., Huang S.Y., Chi C.W. Differential roles of leptin in regulating cell migration in thyroid cancer cells. Oncol. Rep. 2010;123:1721–1727.
    1. MacDougald O.A., Burant C.F. The rapidly expanding family of adipokines. Cell Metab. 2007;6:159–161. doi: 10.1016/j.cmet.2007.08.010.
    1. Margetic S., Gazzola C., Pegg G.G., Hill R.A. Leptin: A review of its peripheral actions and interactions. Int. J. Obes. Relat. Metab. Disord. 2002;26:1407–1433. doi: 10.1038/sj.ijo.0802142.
    1. Ouchi N., Kihara S., Funahashi T., Matsuzawa Y., Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 2003;14:561–566. doi: 10.1097/00041433-200312000-00003.
    1. Wang Y., Lam K.S., Xu A. Adiponectin as a negative regulator in obesity-related mammary carcinogenesis. Cell Res. 2007;17:280–282. doi: 10.1038/cr.2007.14.
    1. Shibata R., Ouchi N., Kihara S., Walsh K. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J. Biol. Chem. 2004;279:28670–28674. doi: 10.1074/jbc.M402558200.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Ding S., Chi M.M., Scull B.P., Schwerbrock N.M., Magness S., Jobin C., Lund P.K. High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010;5:e12191. doi: 10.1371/journal.pone.0012191.
    1. Huffman D.M., Barzilai N. Role of visceral adipose tissue in aging. Biochim. Biophys. Acta. 2009;1790:1117–1123. doi: 10.1016/j.bbagen.2009.01.008.
    1. Neels J.G., Olefsky J.M. Inflamed fat: What starts the fire? J. Clin. Investig. 2006;116:33–35. doi: 10.1172/JCI27280.
    1. Sengenes C., Miranville A., Lolmede K., Curat C.A., Bouloumie A. The role of endothelial cells in inflamed adipose tissue. J. Intern. Med. 2007;262:415–421. doi: 10.1111/j.1365-2796.2007.01853.x.
    1. Marseglia L., D’Angelo G., Manti S., Arrigo T., Barberi I., Reiter R.J., Gitto E. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxid. Med. Cell Longev. 2014;2014:358375. doi: 10.1155/2014/358375.

Source: PubMed

3
Se inscrever