Immunomodulatory properties of cacao extracts - potential consequences for medical applications

Kathrin Becker, Simon Geisler, Florian Ueberall, Dietmar Fuchs, Johanna M Gostner, Kathrin Becker, Simon Geisler, Florian Ueberall, Dietmar Fuchs, Johanna M Gostner

Abstract

Anti-inflammatory properties of cacao, fruits of Theobroma cacao L. (Sterculiaceae), are well documented, and therapeutic applications are described for gastrointestinal, nervous, and cardiovascular abnormalities. Most, if not all of these disease conditions involve inflammation or immune activation processes. The pro-inflammatory cytokine interferon-γ (IFN-γ) and related biochemical pathways like tryptophan breakdown by indoleamine 2,3-dioxygenase (IDO) and neopterin formation are deeply involved in their pathogenesis. Neopterin concentrations and the kynurenine to tryptophan ratio (Kyn/Trp, an estimate of IDO activity) are elevated in a significant proportion of patients with virus infections, cancer, autoimmune syndrome, neurodegeneration, and coronary artery disease. Moreover, higher neopterin and Kyn/Trp concentrations are indicative for poor prognosis. When investigating the effect of aqueous or ethanolic extracts of cacao on IFN-γ, neopterin and Kyn/Trp concentrations in mitogen-stimulated human peripheral blood mononuclear cells, breakdown of tryptophan by IDO, and formation of neopterin and IFN-γ were dose-dependently suppressed. The effects observed in the cell-based assays are associated with the antioxidant activity of the cacao extracts as determined by the cell-free oxygen radical absorption capacity assay. The influence of cacao extracts on IDO activity could be of particular relevance for some of the beneficial health effects ascribed to cacao: tryptophan breakdown by IDO is strongly involved in immunoregulation, and the diminished availability of tryptophan limits the biosynthesis of neurotransmitter serotonin. The inhibition of tryptophan breakdown by cacao constituents could thus be relevant not only for immune system restoration in patients, but also contribute to mood elevation and thereby improve quality of life. However, the available data thus far are merely in vitro only and future studies need to investigate the influence of cacao on tryptophan metabolism in vivo.

Keywords: anti-inflammatory; cacao; cocoa; immunology; neurobiochemistry; tryptophan metabolism.

Figures

FIGURE 1
FIGURE 1
The essential amino acid tryptophan is required for protein biosynthesis or is metabolized via two biochemical routes: (i) via tryptophan 5-hydroxylase (T5H) and subsequent decarboxylation to 5-hydroxytrytophan and serotonin, and (ii) via tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) to kynurenine, which is fur-ther converted to several metabolites (adapted from Widner et al., 2002).
FIGURE 2
FIGURE 2
In various cells the Th1-type cytokine interferon-γ (IFN-γ) induces the GTP-cyclohydrolase I (GCH I) to produce 7,8-dihydroneopterintriphosphate. Due to a deficiency in pyruvoyltetrahydropterin synthase (PTPS) in human monocyte-derived macrophages and dendritic cells, the production of 5,6,7,8-tetrahydrobiopterin is almost zero and neopterin is produced in high concentrations.
FIGURE 3
FIGURE 3
Mean neopterin and tryptophan concentrations in mitogen (PHA)-stimulated freshly isolated peripheral blood mononuclear cells (PBMCs), either treated with 10 μg/ml aqueous cacao extracts or left untreated, compared to unstimulated controls. The results are shown in % of the baseline in the supernatants of unstimulated PBMC. Experiments were run in duplicates and in four independent approaches [**p < 0.05 compared to unstimulated cells; #p < 0.05 compared to stimulated cells; adapted from Jenny et al. (2009)].
FIGURE 4
FIGURE 4
During Th1-type immune response, activated T-cells and natural killer (NK) cells release large amounts of the inflammatory cytokine interferon-γ (IFN-γ), which triggers various immunoregulatory and anti-proliferative activities in target cells like macrophages (MΦ) and dendritic cells (DC). Indoleamine 2,3-dioxygenase (IDO) converts tryptophan into kynurenine. In parallel GTP-cyclohydrolase I (GCH) is induced to produce neopterin out of GTP. Neopterin plays a major role in the release of reactive oxygen species (ROS) in human macrophages. When oxidative stress is rising to higher levels, transcription factor nuclear factor-κB (NF-κB) becomes activated and induces the pro-inflammatory signaling pathways. Cacao, acting as an antioxidant, can influence and counteract against these cascades.

References

    1. Adams S., Braidy N., Bessede A., Brew B. J., Grant R., Teo C., et al. (2012). The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 72 5649–565710.1158/0008-5472.CAN-12-0549
    1. Aggarwal B. B. (2004). Nuclear factor-kappaB: the enemy within. Cancer Cell 6 203–20810.1016/j.ccr.2004.09.003
    1. Albarracin S. L., Stab B., Casas Z., Sutachan J. J., Samudio I., Gonzalez J., et al. (2012). Effects of natural antioxidants in neurodegenerative disease. Nutr. Neurosci. 15 1–910.1179/1476830511Y.0000000028
    1. Andert S. E., Griesmacher A., Zuckermann A, Müller M. M. (1992). Neopterin release from human endothelial cells is triggered by interferon-gamma. Clin. Exp. Immunol. 88 555–55810.1111/j.1365-2249.1992.tb06486.x
    1. Asehnoune K., Strassheim D., Mitra S., Kim J. Y., Abraham E. (2004). Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J. Immunol. 172 2522–2529
    1. Balakrishnan K., Adams L. E. (1995). The role of the lymphocyte in an immune response. Immunol. Invest. 24 233–24410.3109/08820139509062775
    1. Barth H., Berg P. A., Klein R. (2003). Methods for the in vitro determination of an individual disposition towards TH1- or TH2-reactivity by the application of appropriate stimulatory antigens. Clin. Exp. Immunol. 134 78–8510.1046/j.1365-2249.2003.02265
    1. Bisson J. F., Nejdi A., Rozan P., Hidalgo S., Lalonde R., Messaoudi M., et al. (2008). Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. Br. J. Nutr. 100 94–10110.1017/S0007114507886375
    1. Bowler R. P., Crapo J. D. (2002). Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol. 110 349–35610.1067/mai.2002.126780
    1. Bravo L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56 317–3310.1111/j.1753-4887.1998.tb01670.x
    1. Brigelius-Flohé R., Kluth D., Banning A. (2005). Is there a future for antioxidants in atherogenesis? Mol. Nutr. Food Res. 49 1083–108910.1002/mnfr.200500094
    1. Capuron L., Neurauter G., Musselman D. L., Lawson D. H., Nemeroff C. B., Fuchs D., et al. (2003). Interferon-alpha-induced changes in tryptophan metabolism, relationship to depression and paroxetine treatment. Mol. Psychiatry 9 906–91410.1016/S0006-3223(03)00173-2
    1. Capuron L., Ravaud A., Neveu P. J., Miller A. H., Maes M., Dantzer R. (2002). Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry 5 468–47310.1038/sj.mp.4000995
    1. Capuron L., Schroecksnadel S., Féart C., Aubert A., Higueret D., Barberger-Gateau P., et al. (2011). Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol. Psychiatry 70 175–8210.1016/j.biopsych.2010.12.006
    1. Cirillo P., Pacileo M., DE Rosa S., Calabrò P., Gargiulo A., Angri V., et al. (2006). Neopterin induces pro-atherothrombotic phenotype in human coronary endothelial cells. J. Thromb. Haemost. 4 2248–225510.1111/j.1538-7836.2006.02125.x
    1. Corti R., Flammer A. J., Hollenberg N. K, Lüscher T. F. (2009). Cocoa and cardiovascular health. Circulation 119 1433–144110.1161/CIRCULATIONAHA.108.827022
    1. Dantzer R., Kelley K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun. 21 153–16010.1016/j.bbi.2006.09.006
    1. DeVane C. L. (1998). Differential pharmacology of newer antidepressants. J. Clin. Psychiatry 20 85–93
    1. Engler M. B., Engler M. M., Chen C. Y., Malloy M. J., Browne A., Chiu E. Y., et al. (2004). Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 23 197–20410.1080/07315724.2004.10719361
    1. Fisher N. D., Hughes M., Gerhard-Herman M., Hollenberg N. K. (2003). Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens. 21 2281–228610.1097/00004872-200312000-00016
    1. Fuchs D., Hausen A., Huber C., Margreiter R., Reibnegger G., Spielberger M., et al. (1982). Pteridine secretion as a marker for the proliferation of alloantigen-induced lymphocytes. Hoppe Seylers Z. Physiol. Chem. 363 661–664
    1. Fuchs D., Möller A. A., Reibnegger G., Stöckle E., Werner E. R., Wachter H. (1990). Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J. Acquir. Immune Defic. Syndr. 3 873–876
    1. Fuchs D., Weiss G., Reibnegger G., Wachter H. (1992). The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Crit. Rev. Clin. Lab. Sci. 29 307–34110.3109/10408369209114604
    1. Galleano M., Oteiza P. I., Fraga C. G. (2009). Cocoa, chocolate, and cardiovascular disease. J. Cardiovasc. Pharmacol. 54 483–49010.1097/FJC.0b013e3181b76787
    1. Gershon M. D., Tack J. (2007). The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132 397–41410.1053/j.gastro.2006.11.002
    1. Grammer T. B., Fuchs D., Boehm B. O., Winkelmann B. R., Maerz W. (2009). Neopterin as a predictor of total and cardiovascular mortality in individuals undergoing angiography in the Ludwigshafen risk and cardiovascular health study. Clin. Chem. 55 1135–114610.1373/clinchem.2008.118844
    1. Grassi D., Desideri G., Ferri C. (2010). Blood pressure and cardiovascular risk: what about cocoa and chocolate? Arch. Biochem. Biophys. 501 112–11510.1016/j.abb.2010.05.020
    1. Heiss C., Dejam A., Kleinbongard P., Schewe T., Sies H., Kelm M. (2003). Vascular effects of cocoa rich in flavan-3-ols. JAMA 290 1030–103110.1001/jama.290.8.1030
    1. Heyes M. P., Saito K., Crowley J. S., Davis L. E., Demitrack M. A., Der M., et al. (1992). Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115 1249–127310.1093/brain/115.5.1249
    1. Hoekstra R., Fekkes D., van de Wetering B. J., Pepplinkhuizen L., Verhoeven W. M. (2003). Effect of light therapy on biopterin, neopterin and tryptophan in patients with seasonal affective disorder. Psychiatry Res. 120 37–4210.1016/S0165-1781(03)00167-7
    1. Hofmann B., Bass H., Nishanian P., Faisal M., Figlin R. A., Sarna G. P., et al. (1992). Different lymphoid cell populations produce varied levels of neopterin, beta 2-microglobulin and soluble IL-2 receptor when stimulated with IL-2, interferon-gamma or tumour necrosis factor-alpha. Clin. Exp. Immunol. 88 548–55410.1111/j.1365-2249.1992.tb06485.x
    1. Hronek M., Zadak Z., Solichova D., Jandik P., Melichar B. (2000). The association between specific nutritional antioxidants and manifestation of colorectal cancer. Nutrition 16 189–19110.1016/S0899-9007(99)00285-3
    1. Hurst W. J., Tarka S. M., Jr., Powis T. G., Valdez F., Jr., Hester T. R. (2002). Cacao usage by the earliest Maya civilization. Nature 418 289–29010.1038/418289a
    1. Jenny M., Klieber M., Zaknun D., Schroecksnadel S., Kurz K., Ledochowski M., et al. (2011). In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm. Res. 60 127–13510.1007/s00011-010-0244-y
    1. Jenny M., Santer E., Klein A., Ledochowski M., Schennach H., Ueberall F., et al. (2009). Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. J. Ethnopharmacol. 122 261–26710.1016/j.jep.2009.01.011
    1. Jin B., Sun T., Yu X. H., Yang Y. X., Yeo A. E. (2012). The effects of TLR activation on T-cell development and differentiation. Clin. Dev. Immunol. 2012:83648510.1155/2012/836485
    1. Joshipura K. J., Hu F. B., Manson J. E., Stampfer M. J., Rimm E. B., Speizer F. E., et al. (2001). The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 12 1106–111410.7326/0003-4819-134-12-200106190-00010
    1. Keen C. L., Holt R. R., Oteiza P. I., Fraga C. G., Schmitz H. H. (2005). Cocoa antioxidants and cardiovascular health. Am. J. Clin. Nutr. 81 298–303
    1. Klein C., Patte-Mensah C., Taleb O., Bourguignon J. J., Schmitt M., Bihel F., et al. (2013). The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 70 254–26010.1016/j.neuropharm.2013.02.006
    1. Lucey D. R., Clerici M., Shearer G. M. (1996). Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin. Microbiol. Rev. 9 532–562
    1. Maes M., Scharpé S., Meltzer H. Y., Okayli G., Bosmans E., D’Hondt P., et al. (1994). Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res. 2143–16010.1016/0165-1781(94)90003-5
    1. Miller K. B., Stuart D. A., Smith N. L., Lee C. Y., McHale N. L., Flanagan J. A., et al. (2006). Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J. Agric. Food Chem. 54 4062–406810.1021/jf060290o
    1. Mullen W., Borges G., Donovan J. L., Edwards C. A., Serafini M., Lean M. E., et al. (2009). Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans. Am. J. Clin. Nutr. 89 1784–179110.3945/ajcn.2008.27339
    1. Murr C., Fuith L. C., Widner B., Wirleitner B., Baier-Bitterlich G., Fuchs D. (1999). Increased neopterin concentrations in patients with cancer: indicator of oxidative stress? Anticancer Res. 19 1721–1728
    1. Murr C., Widner B., Sperner-Unterweger B., Ledochowski M., Schubert C., Fuchs D. (2000). Immune reaction links disease progression in cancer patients with depression. Med. Hypotheses 2 137–14010.1054/mehy.1999.1043
    1. Murr C., Widner B., Wirleitner B., Fuchs D. (2002). Neopterin as a marker for immune system activation. Curr. Drug Metab. 3 175–18710.2174/1389200024605082
    1. Murr C., Winklhofer-Roob B. M., Schroecksnadel K., Maritschnegg M., Mangge H., Bohm B., et al. (2009). Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis 202 543–54910.1016/j.atherosclerosis.2008.04.047
    1. Nathan C. F. (1986). Peroxide and pteridine: a hypothesis on the regulation of macrophage antimicrobial activity by interferon-gamma. Interferon 7 125–143
    1. Neurauter G., Schroecksnadel K., Scholl-Bürg,i S., Sperner-Unterweger B., Schubert C., Ledochowski M., et al. (2008). Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr. Drug Metab. 9 622–62710.2174/138920008785821738
    1. Parker G., Parker I., Brotchie H. (2006). Mood state effects of chocolate. J. Affect. Disord. 92 149–15910.1016/j.jad.2006.02.007
    1. Payne M. J., Hurst W. J., Miller K. B., Rank C., Stuart D. A. (2010). Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J. Agric. Food Chem. 58 10518–1052710.1021/jf102391q
    1. Pedersen E. R., Midttun Ø., Ueland P. M., Schartum-Hansen H., Seifert R., Igland J., et al. (2011). Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 31698–70410.1161/ATVBAHA.110.219329
    1. Pfefferkorn E. R. (1986). Interferon-gamma and the growth of Toxoplasma gondii in fibroblasts. Ann. Inst. Pasteur. Microbiol. 137A 348–35210.1016/S0769-2609(86)80047-3
    1. Ramiro E., Franch A., Castellote C., Pérez-Cano F., Permanyer J., Izquierdo-Pulido M., et al. (2005). Flavonoids from Theobroma cacao down-regulate inflammatory mediators. J. Agric. Food Chem. 53 8506–851110.1021/jf0511042
    1. Ramsey S. A., Gold E. S., Aderem A. (2010). A systems biology approach to understanding atherosclerosis. EMBO Mol. Med. 2 79–8910.1002/emmm.201000063
    1. Rein D., Paglieroni T. G., Wun T., Pearson D. A., Schmitz H. H., Gosselin R., et al. (2000). Cocoa inhibits platelet activation and function. Am. J. Clin. Nutr. 72 30–35
    1. Rios L. Y., Bennett R. N., Lazarus S. A., Rémésy C., Scalbert A., Williamson G. (2002). Cocoa procyanidins are stable during gastric transit in humans. Am. J. Clin. Nutr. 76 1106–1110
    1. Rodríguez-Ramiro I., Ramos S., Bravo L., Goya L, Martín M. Á. (2011). Procyanidin B2 and a cacao polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J. Nutr. Biochem. 22 1186–119410.1016/j.jnutbio.2010.10.005
    1. Romagnani S. (2004). Immunologic influences on allergy and the TH1/TH2 balance. J. Allergy Clin. Immunol. 113 395–40010.1016/j.jaci.2003.11.025
    1. Romagnani S. (2006). Regulation of the T cell response. Clin. Exp. Allergy 36 1357–136610.1111/j.1365-2222.2006.02606.x
    1. Rusconi M., Conti A. (2010). Theobroma cacao L., the Food of the Gods: a scientific approach beyond myths and claims. Pharmacol. Res. 61 5–1310.1016/j.phrs.2009.08.008
    1. Sas K., Robotka H., Toldi J, Vécsei L. (2007). Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 257 221–23910.1016/j.jns.2007.01.033
    1. Schroecksnadel K., Fischer B., Schennach H., Weiss G., Fuchs D. (2007). Antioxidants suppress Th1-type immune response in vitro. Drug Metab. Lett. 1 166–17110.2174/187231207781369816
    1. Schroecksnadel K., Frick B., Winkler C., Fuchs D. (2006a). Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease. Curr. Vasc. Pharmacol. 4 205–21310.2174/157016106777698379
    1. Schröcksnadel K., Wirleitner B., Winkler C., Fuchs D. (2006b). Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta 364 82–9010.1016/j.cca.2005.06.013
    1. Serafini M., Bugianesi R., Maiani G., Valtuena S., De Santis S., Crozier A. (2003). Plasma antioxidants from chocolate. Nature 424:101310.1038/4241013a
    1. Solà R., Valls R. M., Godàs G., Perez-Busquets G., Ribalta J., Girona J., et al. (2012). Cocoa, hazelnuts, sterols and soluble fiber cream reduces lipids and inflammation biomarkers in hypertensive patients: a randomized controlled trial. PLoS ONE 7:3110310.1371/journal.pone.0031103
    1. Spadafranca A., Martinez, Conesa C., Sirini S., Testolin G. (2010). Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr. 103 1008–101410.1017/S0007114509992698
    1. Stevenson D. E., Hurst R. D. (2007). Polyphenolic phytochemicals–just antioxidants or much more? Cell. Mol. Life Sci. 64 2900–291610.1007/s00018-007-7237-1
    1. Surh Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3768–78010.1038/nrc1189
    1. van Dam R. M., Naidoo N., Landberg R. (2013). Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr. Opin. Lipidol. 24 25–3310.1097/MOL.0b013e32835bcdff
    1. van de Vijver L. P., Kardinaal A. F., Grobbee D. E., Princen H. M, van Poppel G. (1997). Lipoprotein oxidation, antioxidants and cardiovascular risk: epidemiologic evidence. Prostaglandins Leukot. Essent. Fatty Acids 57 479–48710.1016/S0952-3278(97)90432-4
    1. Weiss G., Fuchs D., Hausen A., Reibnegger G., Werner E. R., Werner-Felmayer G., et al. (1993). Neopterin modulates toxicity mediated by reactive oxygen and chloride species. FEBS Lett. 321 89–9210.1016/0014-5793(93)80627-7
    1. Weiss G., Schwaighofer H., Herold M., Nachbaur D., Wachter H., Niederwieser D., et al. (1995). Nitric oxide formation as predictive parameter for acute graft-versus-host disease after human allogeneic bone marrow transplantation. Transplantation 60 1239–1244
    1. Werner E. R., Bichler A., Daxenbichler G., Fuchs D., Fuith L. C., Hausen A., et al. (1987). Determination of neopterin in serum and urine. Clin. Chem. 33 62–66
    1. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger G., Wachter H. (1989). Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma. Biochem. J. 262 861–866
    1. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger G., Yim J. J., et al. (1990). Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J. Biol. Chem. 265 3189–3192
    1. Widner B., Laich A., Sperner-Unterweger B., Ledochowski M., Fuchs D. (2002). Neopterin production, tryptophan degradation, and mental depression–what is the link? Brain Behav. Immun. 16 590–59510.1016/S0889-1591(02)00006-5
    1. Widner B., Wirleitner B., Baier-Bitterlich G., Weiss G., Fuchs D. (2000). Cellular immune activation, neopterin production, tryptophan degradation and the development of immunodeficiency. Arch. Immunol. Ther. Exp. (Warsz) 48 251–258
    1. Williams C. D. (2013). Antioxidants and prevention of gastrointestinal cancers. Curr. Opin. Gastroenterol. 2 195–20010.1097/MOG.0b013e32835c9d1b
    1. Winkler C., Wirleitner B., Schroecksnadel K., Schennach H., Fuchs D. (2004). St. John's wort (Hypericum perforatum) counteracts cytokine-induced tryptophan catabolism in vitro. Biol. Chem. 385 1197–120210.1515/BC.2004.155
    1. Zaknun D., Schroecksnadel S., Kurz K., Fuchs D. (2012). Potential role of antioxidant food supplements, preservatives and colorants in the pathogenesis of allergy and asthma. Int. Arch. Allergy Immunol. 157113–12410.1159/000329137
    1. Zeng H., Locatelli M., Bardelli C., Amoruso A., Coisson J. D., Travaglia F., et al. (2011). Anti-inflammatory properties of clovamide and Theobroma cacao phenolic extracts in human monocytes: evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulation. J. Agric. Food Chem. 59 5342–535010.1021/jf2005386
    1. Zvetkova E., Wirleitner B., Tram N. T., Schennach H., Fuchs D. (2001). Aqueous extracts of Crinum latifolium (L.) and Camellia sinensis show immunomodulatory properties in human peripheral blood mononuclear cells. Int. Immunopharmacol. 1 2143–215010.1016/S1567-5769(01)00140-0

Source: PubMed

3
Se inscrever