Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS)

Tobias U Hauser, Stephanie Rotzer, Roland H Grabner, Susan Mérillat, Lutz Jäncke, Tobias U Hauser, Stephanie Rotzer, Roland H Grabner, Susan Mérillat, Lutz Jäncke

Abstract

The ability to accurately process numerical magnitudes and solve mental arithmetic is of highest importance for schooling and professional career. Although impairments in these domains in disorders such as developmental dyscalculia (DD) are highly detrimental, remediation is still sparse. In recent years, transcranial brain stimulation methods such as transcranial Direct Current Stimulation (tDCS) have been suggested as a treatment for various neurologic and neuropsychiatric disorders. The posterior parietal cortex (PPC) is known to be crucially involved in numerical magnitude processing and mental arithmetic. In this study, we evaluated whether tDCS has a beneficial effect on numerical magnitude processing and mental arithmetic. Due to the unclear lateralization, we stimulated the left, right as well as both hemispheres simultaneously in two experiments. We found that left anodal tDCS significantly enhanced performance in a number comparison and a subtraction task, while bilateral and right anodal tDCS did not induce any improvements compared to sham. Our findings demonstrate that the left PPC is causally involved in numerical magnitude processing and mental arithmetic. Furthermore, we show that these cognitive functions can be enhanced by means of tDCS. These findings encourage to further investigate the beneficial effect of tDCS in the domain of mathematics in healthy and impaired humans.

Keywords: mathematics; mental arithmetic; number comparison; numerical magnitude processing; subtraction; transcranial Direct Current Stimulation (tDCS).

Figures

Figure 1
Figure 1
Study design of Experiments 1 and 2. (A) Subjects came in for four sessions. Before and after stimulation, the participants performed a number comparison and a subtraction task. The stimulation conditions (LA, BA, BC, S) were counter-balanced across sessions. (B) A similar study design as in Experiment 1 was used in the second experiment. The participants had to attend twice, where they received either RA or S stimulation.
Figure 2
Figure 2
Number comparison and complex subtraction task. (A) On every trial of the number comparison task, participants had to decide whether a number was larger or smaller than 65. (B) Subjects had to calculate complex subtractions. As soon as they solved the subtraction, the participants had to press “0” and then choose the correct among the possible solutions.
Figure 3
Figure 3
Stimulation-induced accuracy changes in the number comparison task. Subjects significantly improved their accuracy after LA stimulation, but not after BA or BC compared to S. **p < 0.01, multiple comparison corrected.
Figure 4
Figure 4
Distance effect for reaction time and accuracy. In all sessions, close numbers were solved significantly slower and less accurate. ***p < 0.001.
Figure 5
Figure 5
Stimulation-induced improvements in reaction times in complex subtractions. LA stimulation led to significant performance increases, whereas the other conditions did not change significantly. *p < 0.05, multiple comparison corrected.

References

    1. Andres M., Pelgrims B., Michaux N., Olivier E., Pesenti M. (2011). Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study. Neuroimage 54, 3048–3056 10.1016/j.neuroimage.2010.11.009
    1. Andres M., Seron X., Olivier E. (2005). Hemispheric lateralization of number comparison. Cogn. Brain Res. 25, 283–290 10.1016/j.cogbrainres.2005.06.002
    1. Arsalidou M., Taylor M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 54, 2382–2393 10.1016/j.neuroimage.2010.10.009
    1. Ansari D. (2007). Does the parietal cortex distinguish between “10,” “ten,” and ten dots? Neuron 53, 165–167 10.1016/j.neuron.2007.01.001
    1. Ansari D. (2008). Effects of development and enculturation on number representation in the brain. Nat. Rev. Neurosci. 9, 278–291 10.1038/nrn2334
    1. Battelli L., Alvarez G. A., Carlson T., Pascual-Leone A. (2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. J. Cogn. Neurosci. 21, 1946–1955 10.1162/jocn.2008.21149
    1. Beeli G., Casutt G., Baumgartner T., Jäncke L. (2008a). Modulating presence and impulsiveness by external stimulation of the brain. Behav. Brain Funct. 4, 33 10.1186/1744-9081-4-33
    1. Beeli G., Koeneke S., Gasser K., Jäncke L. (2008b). Brain stimulation modulates driving behavior. Behav. Brain Funct. 4, 34 10.1186/1744-9081-4-34
    1. Bindman L. J., Lippold O. C., Refearn J. W. (1964). The action of brief polarizin currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 172, 369–382
    1. Boggio P. S., Sultani N., Fecteau S., Merabet L., Mecca T., Pascual-Leone A., et al. (2008). Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 92, 55–60 10.1016/j.drugalcdep.2007.06.011
    1. Bynner J., Parsons S. (1997). Does Numeracy Matter? London: Basic Skills Agency
    1. Cappelletti M., Barth H., Fregni F., Spelke E. S., Pascual-Leone A. (2007). rTMS over the intraparietal sulcus disrupts numerosity processing. Exp. Brain Res. 179, 631–642 10.1007/s00221-006-0820-0
    1. Cerruti C., Schlaug G. (2008). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J. Cogn. Neurosci. 21, 1980–1987 10.1162/jocn.2008.21143
    1. Cohen Kadosh R., Cohen Kadosh K., Schuhmann T., Kaas A., Goebel R., Henik A., et al. (2007). Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Curr. Biol. 17, 689–693 10.1016/j.cub.2007.02.056
    1. Cohen Kadosh R., Levy N., O'Shea J., Shea N., Savulescu J. (2012). The neuroethics of non-invasive brain stimulation. Curr. Biol. 22, R108–R111 10.1016/j.cub.2012.01.013
    1. Cohen Kadosh R., Soskic S., Iuculano T., Kanai R., Walsh V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 20, 2016–2020 10.1016/j.cub.2010.10.007
    1. Cohen Kadosh R., Walsh V. (2007). Dyscalculia. Curr. Biol. 17, R946–R947 10.1016/j.cub.2007.08.038
    1. Croarkin P. E., Wall C. A., Lee J. (2011). Applications of transcranial magnetic stimulation (TMS) in child and adolescent psychiatry. Int. Rev. Psychiatry 23, 445–453 10.3109/09540261.2011.623688
    1. Dehaene S., Piazza M., Pinel P., Cohen L. G. (2003). Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506 10.1080/02643290244000239
    1. Dmochowski J. P., Datta A., Bikson M., Su Y., Parra L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. J. Neural Eng. 8, 1–16 10.1088/1741-2560/8/4/046011
    1. Dormal V., Andres M., Pesenti M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus: a transcranial magnetic stimulation study. Cortex 44, 462–469 10.1016/j.cortex.2007.08.011
    1. Ferbert A., Priori A., Rothwell J. C., Day B. L., Colebatch J. G., Marsden C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol. 453, 525–546
    1. Fias W., Lammertyn J., Reynvoet B., Dupont P., Orban G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. J. Cogn. Neurosci. 15, 47–56 10.1162/089892903321107819
    1. Fregni F., Boggio P. S., Nitsche M. A., Bermpohl F., Antal A., Feredoes E., et al. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30 10.1007/s00221-005-2334-6
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–850 10.1016/j.clinph.2005.12.003
    1. Geary D. C. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychol. Bull. 114, 345–362 10.1037/0033-2909.114.2.345
    1. Geary D. C. (2010). Mathematical disabilities: reflections on cognitive, neuropsychological, and genetic components. Learn. Individ. Differ. 20, 130–130 10.1016/j.lindif.2009.10.008
    1. Göbel S. M., Rushworth M. F., Walsh V. (2006). Inferior parietal rtms affects performance in an addition task. Cortex 42, 774–781 10.1016/S0010-9452(08)70416-7
    1. Göbel S. M., Walsh V., Rushworth M. F. (2001). The mental number line and the human angular gyrus. Neuroimage 14, 1278–1289 10.1006/nimg.2001.0927
    1. Grabner R. H., Ansari D., Koschutnig K., Reishofer G., Ebner F., Neuper C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia 47, 604–608 10.1016/j.neuropsychologia.2008.10.013
    1. Grabner R. H., Ansari D., Reishofer G., Stern E., Ebner F., Neuper C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage 38, 346–356 10.1016/j.neuroimage.2007.07.041
    1. Hagner M. (2004). Geniale Gehirne - Zur Geschichte der Elitegehirnforschung. Göttingen: Wallstein Verlag
    1. Herwig U., Satrapi P., Schönfeldt-Lecuona C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 16, 95–99 10.1023/B:BRAT.0000006333.93597.9d
    1. Holtzheimer P. E., 3rd, Kosel M., Schlaepfer T. (2012). Brain stimulation therapies for neuropsychiatric disease. Handb. Clin. Neurol. 106, 681–695 10.1016/B978-0-444-52002-9.00041-3
    1. Hummel F. C., Cohen L. G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712 10.1016/S1474-4422(06)70525-7
    1. Im C.-H., Jung H.-H., Choi J.-D., Lee S. Y., Jung K.-Y. (2008). Determination of optimal electrode positions for transcranial direct current stimulation (tDCS). Phys. Med. Biol. 53, N219–N225 10.1088/0031-9155/53/11/N03
    1. Ischebeck A., Zamarian L., Siedentopf C., Koppelstätter F., Benke T., Felber S., et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage 30, 1365–1375 10.1016/j.neuroimage.2005.11.016
    1. Jasper H. H. (1958). The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 370–375
    1. Knops A., Nuerk H.-C., Sparing R., Foltys H., Willmes K. (2006). On the functional role of human parietal cortex in number processing: how gender mediates the impact of a “virtual lesion” induced by rTMS. Neuropsychologia 44, 2270–2283 10.1016/j.neuropsychologia.2006.05.011
    1. Landerl K., Bevan A., Butterworth B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition 93, 99–125 10.1016/j.cognition.2003.11.004
    1. Lehrl S., Gallwitz A., Blaha L. (1992). Kurztest Für Allgemeine Basisgrössen der Informationsverarbeitung, K. A. I., 3rd Edn Ebersberg: VLESS Verlag
    1. Lindenberg R., Renga V., Zhu L. L., Nair D., Schlaug G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–2184 10.1212/WNL.0b013e318202013a
    1. Miranda P. C., Lomarev M., Hallett M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629 10.1016/j.clinph.2006.04.009
    1. Monti A., Cogiamanian F., Marceglia S., Ferrucci R., Mameli F., Mrakic-Sposta S., et al. (2008). Improved naming after transcranial direct current stimulation in aphasia. J. Neurol. Neurosurg. Psychiatr. 79, 451–453 10.1136/jnnp.2007.135277
    1. Moyer R. S., Landauer T. K. (1967). Time required for judgements of numerical inequality. Nature 215, 1519–1520 10.1038/2151519a0
    1. Neuling T., Wagner S., Wolters C. H., Zaehle T., Herrmann C. S. (2012). Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front. Psychiatry 3:83 10.3389/fpsyt.2012.00083
    1. Nieder A. (2005). Counting on neurons: the neurobiology of numerical competence. Nat. Rev. Neurosci. 6, 177–190 10.1038/nrn1626
    1. Nieder A., Dehaene S. (2009). Representation of number in the brain. Annu. Rev. Neurosci. 32, 185–208 10.1146/annurev.neuro.051508.135550
    1. Nitsche M. A., Boggio P. S., Fregni F., Pascual-Leone A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp. Neurol. 219, 14–19 10.1016/j.expneurol.2009.03.038
    1. Nitsche M. A., Doemkes S., Karaköse T., Antal A., Liebetanz D., Lang N., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97, 3109–3117 10.1152/jn.01312.2006
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(Pt 3), 633–639 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Parsons S., Bynner J. (2005). Does Numeracy Matter More? London: National Research and Development Centre for adult literacy and numeracy
    1. Peng Z., Chen X.-Q., Gong S.-S. (2012). Effectiveness of repetitive transcranial magnetic stimulation for chronic tinnitus: a systematic review. Otolaryngol. Head Neck Surg. 147, 817–825 10.1177/0194599812458771
    1. Pinel P., Dehaene S., Rivière D., LeBihan D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage 14, 1013–1026 10.1006/nimg.2001.0913
    1. Rusconi E., Walsh V., Butterworth B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia 43, 1609–1624 10.1016/j.neuropsychologia.2005.01.009
    1. Salvador R., Mekonnen A., Ruffini G., Miranda P. C. (2010). Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 2073–2076 10.1109/IEMBS.2010.5626315
    1. Sandrini M., Rossini P. M., Miniussi C. (2004). The differential involvement of inferior parietal lobule in number comparison: a rTMS study. Neuropsychologia 42, 1902–1909 10.1016/j.neuropsychologia.2004.05.005
    1. Sandrini M., Rusconi E. (2009). A brain for numbers. Cortex 45, 796–803 10.1016/j.cortex.2008.09.002
    1. Schlaug G., Renga V., Nair D. (2008). Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65, 1571–1576 10.1001/archneur.65.12.1571
    1. Seymour S. E., Reuter-Lorenz P. A., Gazzaniga M. S. (1994). The disconnection syndrome. Basic findings reaffirmed. Brain 117(Pt 1), 105–115 10.1093/brain/117.1.105
    1. Vines B. W., Cerruti C., Schlaug G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 9:103 10.1186/1471-2202-9-103
    1. Vines B. W., Nair D., Schlaug G. (2006a). Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport 17, 671–674
    1. Vines B. W., Schnider N. M., Schlaug G. (2006b). Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport 17, 1047–1050 10.1097/01.wnr.0000223396.05070.a2

Source: PubMed

3
Se inscrever