Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing

Oleg O Glebov, Oleg O Glebov

Abstract

The quest for the effective treatment against coronavirus disease 2019 pneumonia caused by the severe acute respiratory syndrome (SARS)-coronavirus 2(CoV-2) coronavirus is hampered by the lack of knowledge concerning the basic cell biology of the infection. Given that most viruses use endocytosis to enter the host cell, mechanistic investigation of SARS-CoV-2 infection needs to consider the diversity of endocytic pathways available for SARS-CoV-2 entry in the human lung epithelium. Taking advantage of the well-established methodology of membrane trafficking studies, this research direction allows for the rapid characterisation of the key cell biological mechanism(s) responsible for SARS-CoV-2 infection. Furthermore, 11 clinically approved generic drugs are identified as potential candidates for repurposing as blockers of several potential routes for SARS-CoV-2 endocytosis. More broadly, the paradigm of targeting a fundamental aspect of human cell biology to protect against infection may be advantageous in the context of future pandemic outbreaks.

Keywords: COVID-19; SARS-CoV-2; drug repurposing; endocytosis; membrane trafficking.

Conflict of interest statement

The authors declare no conflict of interest.

© 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Figures

Fig. 1
Fig. 1
A simplified representation of endocytic pathways potentially involved in internalisation of SARS‐CoV‐2. Selected endocytic pathways are enclosed in grey boxes. Selected key structural and regulatory proteins are shown graphically or mentioned by name. Thick arrows represent the directional flow of membrane trafficking pathways. A thin black arrow represents viral trajectory following the completion of its putative endocytic itinerary. Red lines with squares at their ends indicate putative pharmacological blockade of processes. Black line with a square at its end indicates the suggested effect of chloroquine and hydroxychloroquine on viral fusion in the endosome. The names of the candidate drug blockers are italicised.

References

    1. Park M, Thwaites RS & Openshaw PJM (2020) COVID‐19: lessons from SARS and MERS. Eur J Immunol 50, 308–311.
    1. WHO (2020) Coronavirus disease (COVID‐2019) R&D. WHO.
    1. Coronavirus vaccine: when will it be ready? | World news | The Guardian. Available at: . (Accessed 1st April 2020).
    1. Dong L, Hu S & Gao J (2020) Discovering drugs to treat coronavirus disease 2019 (COVID‐19). Drug Discov Ther 14, 58–60.
    1. Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F et al. (2014) Structure‐based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 5, 3067.
    1. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J et al. (2020) Characterization of spike glycoprotein of SARS‐CoV‐2 on virus entry and its immune cross‐reactivity with SARS‐CoV. Nat Commun 11, 1620.
    1. Hoffmann M,Kleine‐Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N‐H, Nitsche A et al. (2020) SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.
    1. Zhou P, Yang X‐L, Wang X‐G, Hu B, Zhang L, Zhang W, Si H‐R, Zhu Y, Li B, Huang C‐L et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.
    1. Hikmet F, Mear L, Uhlen M & Lindskog C (2020) The protein expression profile of ACE2 in human tissues . bioRxiv, 10.1101/2020.03.31.016048
    1. Sungnak W, Huang N, Bécavin C, Berg M & Network HLB (2020) SARS‐CoV‐2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways.
    1. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM et al. (2020) SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181, 1016–1035.
    1. Pinto BG, Oliveira AE, Singh Y, Jimenez L, Goncalves AN, Ogava RL, Creighton R, Peron JP & Nakaya HI (2020) ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID‐19. medRxiv. 10.1101/2020.03.21.20040261.
    1. Li G, He X, Zhang L, Ran Q, Wang J, Xiong A, Wu D, Chen F, Sun J & Chang C (2020) Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID‐19. J Autoimmun 102463, 10.1016/j.jaut.2020.102463.
    1. Wang K, Chen W, Zhou YS, Lian JQ, Zhang Z, Du P, Gong L, Zhang Y, Cui HY, Geng JJ et al. (2020) SARS‐CoV‐2 invades host cells via a novel route: CD147‐spike protein. bioRxiv. 10.1101/2020.03.14.988345
    1. Mercer J, Schelhaas M & Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79, 803–833.
    1. Doherty GJ & McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78, 857–902.
    1. Milewska A, Nowak P, Owczarek K, Szczepanski A, Zarebski M, Hoang A, Berniak K, Wojarski J, Zeglen S, Baster Z et al. (2018) Entry of human coronavirus NL63 into the cell. J Virol 92.
    1. Szczepanski A, Owczarek K, Milewska A, Baster Z, Rajfur Z, Mitchell JA & Pyrc K (2018) Canine respiratory coronavirus employs caveolin‐1‐mediated pathway for internalization to HRT‐18G cells. Vet Res 49, 55.
    1. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G & Jiang C (2008) SARS coronavirus entry into host cells through a novel clathrin‐ and caveolae‐independent endocytic pathway. Cell Res 18, 290–301.
    1. Lu Y, Liu DX & Tam JP (2008) Lipid rafts are involved in SARS‐CoV entry into vero E6 cells. Biochem Biophys Res Commun 369, 344–349.
    1. Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T & Sugamura K (2007) Clathrin‐dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol 81, 8722–8729.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS & Manson JJ (2020) COVID‐19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034.
    1. Tian S, Hu W, Niu L, Liu H, Xu H & Xiao S‐Y (2020) Pulmonary pathology of early‐phase 2019 novel coronavirus (COVID‐19) pneumonia in two patients with lung cancer. J Thorac Oncol 15, 700–704.
    1. Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, Zhang S, Cao T, Yang C, Li M et al. (2020) Histopathologic changes and SARS–CoV‐2 immunostaining in the lung of a patient with COVID‐19. Ann Intern Med 172, 629–632.
    1. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Munnink BB, de Meulder D , van Amerongen G , van den Brand J , Okba NM et al. (2020) Comparative pathogenesis of COVID‐19, MERS and SARS in a non‐human primate model . bioRxiv. 10.1101/2020.03.17.995639
    1. Bannister LH & Dodson HC (1992) Endocytic pathways in the olfactory and vomeronasal epithelia of the mouse: ultrastructure and uptake of tracers. Microsc Res Tech 23, 128–141.
    1. García‐Pérez BE, Mondragón‐Flores R & Luna‐Herrera J (2003) Internalization of Mycobacterium tuberculosis by macropinocytosis in non‐phagocytic cells. Microb Pathog 35, 49–55.
    1. Bradburne CE, Verhoeven AB, Manyam GC, Chaudhry SA, Chang EL, Thach DC, Bailey CL & van Hoek ML (2013) Temporal transcriptional response during infection of type II Alveolar Epithelial Cells with Francisella tularensis Live Vaccine Strain (LVS) supports a general host suppression and bacterial uptake by macropinocytosis. J Biol Chem 288, 10780–10791.
    1. de Vries E, Tscherne DM, Wienholts MJ, Cobos‐Jimenez V, Scholte F, Garcia‐Sastre A, Rottier PJ & de Haan CA (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 7, e1001329.
    1. Kalin S, Amstutz B, Gastaldelli M, Wolfrum N, Boucke K, Havenga M, DiGennaro F, Liska N, Hemmi S & Greber UF (2010) Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J Virol 84, 5336–5350.
    1. López‐Gómez A, Cano V, Moranta D, Morey P, García del Portillo F, Bengoechea JA & Garmendia J (2012) Host cell kinases, α5 and β1 integrins, and Rac1 signalling on the microtubule cytoskeleton are important for non‐typable Haemophilus influenzae invasion of respiratory epithelial cells. Microbiology 158, 2384–2398.
    1. dos Santos T, Varela J, Lynch I, Salvati A & Dawson KA (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6, e24438.
    1. Sipos A, Kim K‐J, Sioutas C & Crandall ED (2019) Evidence for nanoparticle‐induced lysosomal dysfunction in lung adenocarcinoma (A549) cells. Int J Mol Sci 20, 5253.
    1. Vardavas C & Nikitara K (2020) COVID‐19 and smoking: a systematic review of the evidence. Tob Induc Dis 18, 20.
    1. Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, Dong J, Wei J & Liu X (2017) Characterization of air‐liquid interface culture of A549 alveolar epithelial cells. Brazilian J Med Biol Res 51, e6950.
    1. Kreft ME, Jerman UD, Lasič E, Rižner TL, Hevir‐Kene N, Peternel L & Kristan K (2015) The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res 32, 665–679.
    1. Reis CR, Chen P‐H, Bendris N & Schmid SL (2017) TRAIL‐death receptor endocytosis and apoptosis are selectively regulated by dynamin‐1 activation. Proc Natl Acad Sci USA 114, 504–509.
    1. Huang S, Wiszniewski L, Constant S & Roggen E (2013) Potential of in vitro reconstituted 3D human airway epithelia (MucilAir™) to assess respiratory sensitizers. Toxicol Vitr 27, 1151–1156.
    1. Akimoto M, Hayashi J‐I, Nakae S, Saito H & Takenaga K (2016) Interleukin‐33 enhances programmed oncosis of ST2L‐positive low‐metastatic cells in the tumour microenvironment of lung cancer. Cell Death Dis 7, e2057.
    1. Pizzorno A, Padey B, Julien T, Trouillet‐Assant S, Traversier A, Errazuriz‐Cerda E, Fouret J, Dubois J, Gaymard A, Lescure X et al. (2020) Characterization and treatment of SARS‐CoV‐2 in nasal and bronchial human airway epithelia. bioRxiv. 10.1101/2020.03.31.017889
    1. Ehrhardt C, Kim K‐J & Lehr C‐M (2005) Isolation and culture of human alveolar epithelial cells. In Methods in Molecular Medicine (Picot J, ed), vol. 107, pp. 207– 216. Humana Press, Totowa, NJ.
    1. Kumari S, Mg S & Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20, 256–275.
    1. Glebov OO, Tigaret CM, Mellor JR & Henley JM (2015) Clathrin‐independent trafficking of AMPA receptors. J Neurosci 35, 4830–4836.
    1. Hansen CG & Nichols BJ (2009) Molecular mechanisms of clathrin‐independent endocytosis. J.Cell Sci 122, 1713–1721.
    1. Glebov OO, Bright NA & Nichols BJ (2006) Flotillin‐1 defines a clathrin‐independent endocytic pathway in mammalian cells. Nat Cell Biol 8, 46–54.
    1. Park RJ, Shen H, Liu L, Liu X, Ferguson SM & De Camilli P (2013) Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J Cell Sci 126, 5305–5312.
    1. Dutta D, Williamson CD, Cole NB & Donaldson JG (2012) Pitstop 2 is a potent inhibitor of clathrin‐independent endocytosis. PLoS One 7, e45799.
    1. Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, Sanders NN & Braeckmans K (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18, 561–569.
    1. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC et al. (2020) Emerging SARS‐CoV‐2 mutation hot spots include a novel RNA‐dependent‐RNA polymerase variant. J Transl Med 18, 179.
    1. Chand GB & Azad GK (2020) Identification of novel mutations in RNA‐dependent RNA polymerases of SARS‐CoV‐2 and their implications. bioRxiv 2020, 10.1101/2020.05.05.079939
    1. Mazzon M & Marsh M (2019) Targeting viral entry as a strategy for broad‐spectrum antivirals. F1000Res 8. 10.12688/f1000research.19694.1.
    1. Owens B (2020) Excitement around hydroxychloroquine for treating COVID‐19 causes challenges for rheumatology. Lancet Rheumatol 2, e257.
    1. Borba MGS, de Almeida Val F, Sampaio VS, Alexandre MA, Melo GC, Brito M, Mourao M, Sousa JD, Guerra MV, Hajjar L et al. (2020) Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS‐CoV‐2) infection: preliminary safety results of a randomized, double‐blinded, phase IIb clinical trial (CloroCovid‐19 Study). medRxiv. 10.1101/2020.04.07.20056424.
    1. Letko M, Marzi A & Munster V (2020) Functional assessment of cell entry and receptor usage for SARS‐CoV‐2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562–569.
    1. Otomo M, Takahashi K, Miyoshi H, Osada K, Nakashima H & Yamaguchi N (2008) Some selective serotonin reuptake inhibitors inhibit dynamin I Guanosine Triphosphatase (GTPase). Biol Pharm Bull 31, 1489–1495.
    1. Takahashi K, Miyoshi H, Otomo M, Osada K, Yamaguchi N & Nakashima H (2010) Suppression of dynamin GTPase activity by sertraline leads to inhibition of dynamin‐dependent endocytosis. Biochem Biophys Res Commun 391, 382–387.
    1. Herxheimer H(1949) Antihistamines in bronchial asthma. Br Med J 2, 901–905.
    1. Sharma RK, Sehgal S, Sachdeva N, Kumar R & Gupta A (2019) Direct engagement of TLR9 ligand with T helper cells leads to cell proliferation & up‐regulation of cytokines. Immunol Invest 48, 79–95.
    1. Mckendrick GD& Medlock JM(1958) Pulmonary moniliasis treated with nystatin aerosol. Lancet 271, 621–622.
    1. Tomkiewicz RP, App EM, Zayas JG, Ramirez O, Church N, Boucher RC, Knowles MR & King M (1993) Amiloride inhalation therapy in cystic fibrosis: influence on ion content, hydration, and rheology of sputum. Am Rev Respir Dis 148, 1002–1007.
    1. Lin H‐P, Singla B, Ghoshal P, Faulkner JL, Cherian‐Shaw M, O'Connor PM, She JX, Belin de Chantemele EJ & Csányi G(2018) Identification of novel macropinocytosis inhibitors using a rational screen of Food and Drug Administration‐approved drugs. Br J Pharmacol 175, 3640–3655.
    1. Morgan EH & Iacopetta BJ (1987) Vinblastine but not other microtubule inhibitors block transferrin endocytosis and iron uptake by reticulocytes. Clin Exp Pharmacol Physiol 14, 119–126.
    1. Inhaled Itraconazole Fast‐Tracked for Allergic Bronchopulmonary Aspergillosis in Asthma. Available at: . (Accessed: 1st April 2020).
    1. Itraconazole Inhalation Receives IND Approval for Phase 2 Clinical Trial. Available at: . (Accessed: 3rd April 2020).
    1. Irie T & Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86, 147–162.

Source: PubMed

3
Se inscrever