Drug-Induced Metabolic Acidosis

Amy Quynh Trang Pham, Li Hao Richie Xu, Orson W Moe, Amy Quynh Trang Pham, Li Hao Richie Xu, Orson W Moe

Abstract

Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs' characteristics.

Keywords: MALA; acidosis; drug-induced; metabolic.

Conflict of interest statement

Competing interests: The authors have no competing interests.

No competing interests were disclosed.

Figures

Figure 1.. Excretion of acid and ways…
Figure 1.. Excretion of acid and ways to jeopardize the system.
1. A strong non-volatile acid HA dissociates to release H + and poses an immediate threat to plasma pH. 2. Bicarbonate buffers the H + and generates CO 2, which is expelled in the lungs and results in depletion of body HCO 3 -. Non-bicarbonate buffers (collectively referred to as B) carry the H + until the kidneys excrete it. 3. The kidneys split CO 2 into H + and HCO 3 - and selectively secrete H + into the lumen and HCO 3 - into the blood. In addition, any excess H + from the body fluid is also excreted. 4. Most H + excreted in the urine is carried by urinary buffers (UBs). 5. Some organic anions (A) (e.g. lactate, ketoanions) can be metabolized to regenerate the HCO 3 -. If A is not metabolizable (e.g. phosphate or sulfate), it is excreted in the urine. * Two possible ways by which metabolic acidosis can occur.
Figure 2.. Mechanisms of drug-induced metabolic acidosis.
Figure 2.. Mechanisms of drug-induced metabolic acidosis.
1. Increased exogenous ingestion of acidic precursors that are converted into strong acids. 2. Loss of alkali from kidney or GI tract. 3. Increased endogenous production of strong organic acids. 4. Compromised renal net acid excretion by inhibition of the renin-angiotensin-aldosterone system (RAAS), impaired proximal tubule (PT), or distal tubule (DT) H + secretion.
Figure 3.. Mechanisms of drug-induced lactic acidosis.
Figure 3.. Mechanisms of drug-induced lactic acidosis.
1. Metformin inhibits pyruvate carboxylase (PC) → inhibits hepatic gluconeogenesis → excess lactate . Metformin also inhibits complex I of the mitochondrial electron transport chain (ETC) → increases NADH/NAD + ratio → blocks the entry of pyruvate into the tricarboxylic acid (TCA) cycle . LDH = lactate dehydrogenase 2.In vitro, nucleoside reverse transcriptase inhibitors (NRTIs) inhibit β-oxidation, the tricarboxylic acid (Krebs) cycle, and DNA γ-polymerase → mitochondrial dysfunction and loss of transcription of essential enzymes → hepatic steatosis (increased triglycerides), myopathy, pancreatitis, nephrotoxicity, and lactic acidosis . 3. Linezolid may cross-react with mammalian cellular processes → disrupts mitochondrial protein synthesis involved in ETC , . 4. Propofol may inhibit coenzyme Q and cytochrome C at Complex IV in ETC, and also inhibit mitochondrial fatty acid metabolism . 5. Isoniazid inhibits metabolism of lactate to pyruvate .
Figure 4.. Mechanisms of drug-induced distal H…
Figure 4.. Mechanisms of drug-induced distal H + secretion.
1. Cyclooxygenase (COX) inhibitors and β-blockers interfere with release of renin, leading to hyperkalemia with metabolic acidosis , . 2. Angiotensin-converting enzyme inhibitors (ACEIs), aldosterone receptor blockers (ARBs), and renin inhibitors all interfere with the renin-angiotensin-aldosterone system (RAAS), causing hyperkalemia with hyperchloremic metabolic acidosis – . 3. Heparin and ketoconazole , interfere with aldosterone synthesis. 4. Spironolactone and eplerenone block aldosterone receptors , . 5. Na + channel blockers lead to reduced net negative charge in lumen in cortical collecting ducts (CCD), which reduces K + and H + excretion and causes hyperkalemia and acidosis , – . 6. Calcineurin inhibitors interfere with Na, K-ATPase in the principal cell decreasing transepithelial K secretion and H + secretion, cause vasoconstriction of afferent glomerular arterioles, and decrease glomerular filtration rate and alter filtration fraction , . 7. Lithium causes a voltage-dependent defect for H + secretion and decreases H +-ATPase activity – . 8. Amphotericin B binds to sterol in mammalian cell membranes , forming intramembranous pores which increase permeability and back diffusion of H +.
Figure 5.. Mechanisms of proximal tubule (PT)…
Figure 5.. Mechanisms of proximal tubule (PT) and drug-induced Fanconi syndrome.
1. CA inhibitors cause bicarbonaturia and hyperchloremic metabolic acidosis in the elderly and patients with renal failure and diabetes . 2. Antineoplastic platinum-containing agents , and DNA-alkylating agents – damage proximal tubule cells through accumulation and induced cell apoptosis. 3. Anti-viral/HIV drugs , – , valproic acid (VPA) – , and outdated tetracycline – interfere with mitochondrial function within proximal tubule cells, leading to tubular dysfunction. 4. Aminoglycosides , , induce acidosis with unclear mechanisms . 5. Deferasirox – increases hemodynamic iron removal, causes vacuolization of proximal tubular epithelial cells , and elevates iron absorption in various organs. All could lead to acidosis.

References

    1. Moe OW, Fuster D, Alpern RJ: Common acid-base disorders. In: Goldman L, Wachter RM, Hollander H, editors. Hosp Med 2nd ed. Philadelphia: Lippincott, William & Wilkins;2005;1055–65.
    1. Wiederkehr MR, Moe OW: Treatment of metabolic acidosis. In: Massry SG, Suki WK, editors. Therapy of Renal Diseases and Related Disorders 4th ed: Springer; In press,2011.
    1. Moe OW, Fuster D: Clinical acid-base pathophysiology: disorders of plasma anion gap. Best Pract Res Clin Endocrinol Metab. 2003;17(4):559–74. 10.1016/S1521-690X(03)00054-X
    1. McMartin KE, Ambre JJ, Tephly TR: Methanol poisoning in human subjects. Role for formic acid accumulation in the metabolic acidosis. Am J Med. 1980;68(3):414–8. 10.1016/0002-9343(80)90113-8
    1. Jacobsen D, Hewlett TP, Webb R, et al. : Ethylene glycol intoxication: evaluation of kinetics and crystalluria. Am J Med. 1988;84(1):145–52. 10.1016/0002-9343(88)90024-1
    1. Vale JA, Buckley BM: Metabolic acidosis in diethylene glycol poisoning. Lancet. 1985;2(8451):394. 10.1016/S0140-6736(85)92538-3
    1. Slaughter RJ, Mason RW, Beasley DM, et al. : Isopropanol poisoning. Clin Toxicol (Phila). 2014;52(5):470–8. 10.3109/15563650.2014.914527
    1. Carlisle EJ, Donnelly SM, Vasuvattakul S, et al. : Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol. 1991;1(8):1019–27.
    1. Relman AS, Shelburne PF, Talman A: Profound acidosis resulting from excessive ammonium chloride in previously healthy subjects. A study of two cases. N Engl J Med. 1961;264:848–52. 10.1056/NEJM196104272641703
    1. Lemann J, Jr, Lennon EJ, Goodman AD, et al. : The net balance of acid in subjects given large loads of acid or alkali. J Clin Invest. 1965;44(4):507–17. 10.1172/JCI105164
    1. Lemann J, Jr, Lennon EJ, Goodman AD, et al. : The role of fixed tissue buffers in acid-base regulation. Trans Assoc Am Physicians. 1964;77:188–95.
    1. Tsai IC, Huang JW, Chu TS, et al. : Factors associated with metabolic acidosis in patients receiving parenteral nutrition. Nephrology (Carlton). 2007;12(1):3–7. 10.1111/j.1440-1797.2006.00748.x
    1. Wilson KC, Reardon C, Theodore AC, et al. : Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines: a case series and prospective, observational pilot study. Chest. 2005;128(3):1674–81. 10.1378/chest.128.3.1674
    1. Toxicological evaluation of certain food additives with a review of general principles and of specifications. Seventeenth report of the joint FAO-WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser. 1974;539:1–40.
    1. Martin G, Finberg L: Propylene glycol: a potentially toxic vehicle in liquid dosage form. J Pediatr. 1970;77(5):877–8. 10.1016/S0022-3476(70)80253-0
    1. Cate JC, 4th, Hedrick R: Propylene glycol intoxication and lactic acidosis. N Engl J Med. 1980;303(21):1237. 10.1056/NEJM198011203032116
    1. Wilson KC, Reardon C, Farber HW: Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med. 2000;343(11):815. 10.1056/NEJM200009143431115
    1. Bedichek E, Kirschbaum B: A case of propylene glycol toxic reaction associated with etomidate infusion. Arch Intern Med. 1991;151(11):2297–8. 10.1001/archinte.1991.00400110137026
    1. Demey HE, Daelemans RA, Verpooten GA, et al. : Propylene glycol-induced side effects during intravenous nitroglycerin therapy. Intensive Care Med. 1988;14(3):221–6. 10.1007/BF00717993
    1. Yorgin PD, Theodorou AA, Al-Uzri A, et al. : Propylene glycol-induced proximal renal tubular cell injury. Am J Kidney Dis. 1997;30(1):134–9. 10.1016/S0272-6386(97)90577-1
    1. Ruddick JA: Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol. 1972;21(1):102–11. 10.1016/0041-008X(72)90032-4
    1. Speth PA, Vree TB, Neilen NF, et al. : Propylene glycol pharmacokinetics and effects after intravenous infusion in humans. Ther Drug Monit. 1987;9(3):255–8. 10.1097/00007691-198709000-00001
    1. Morshed KM, Jain SK, McMartin KE: Propylene glycol-mediated cell injury in a primary culture of human proximal tubule cells. Toxicol Sci. 1998;46(2):410–7. 10.1006/toxs.1998.2521
    1. Lu J, Zello GA, Randell E, et al. : Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis. Clin Chim Acta. 2011;412(3–4):286–91. 10.1016/j.cca.2010.10.020
    2. F1000 Recommendation

    1. Hanley T, Platts MM: Observations on the metabolic effects of the carbonic anhydrase inhibitor diamox: mode and rate of recovery from the drug's action. J Clin Invest. 1956;35(1):20–30. 10.1172/JCI103248
    1. Chapron DJ, Gomolin IH, Sweeney KR: Acetazolamide blood concentrations are excessive in the elderly: propensity for acidosis and relationship to renal function. J Clin Pharmacol. 1989;29(4):348–53. 10.1002/j.1552-4604.1989.tb03340.x
    1. De Marchi S, Cecchin E: Severe metabolic acidosis and disturbances of calcium metabolism induced by acetazolamide in patients on haemodialysis. Clin Sci (Lond). 1990;78(3):295–302. 10.1042/cs0780295
    1. Siklos P, Henderson RG: Severe acidosis from acetazolamide in a diabetic patient. Curr Med Res Opin. 1979;6(4):284–6. 10.1185/03007997909109439
    1. Filippi L, Bagnoli F, Margollicci M, et al. : Pathogenic mechanism, prophylaxis, and therapy of symptomatic acidosis induced by acetazolamide. J Investig Med. 2002;50(2):125–32. 10.2310/6650.2002.31297
    1. Menon GJ, Vernon SA: Topical brinzolamide and metabolic acidosis. Br J Ophthalmol. 2006;90(2):247–8. 10.1136/bjo.2005.075622
    1. Mirza N, Marson AG, Pirmohamed M: Effect of topiramate on acid-base balance: extent, mechanism and effects. Br J Clin Pharmacol. 2009;68(5):655–61. 10.1111/j.1365-2125.2009.03521.x
    1. Wilner A, Raymond K, Pollard R: Topiramate and metabolic acidosis. Epilepsia. 1999;40(6):792–5. 10.1111/j.1528-1157.1999.tb00781.x
    1. Stowe CD, Bollinger T, James LP, et al. : Acute mental status changes and hyperchloremic metabolic acidosis with long-term topiramate therapy. Pharmacotherapy. 2000;20(1):105–9. 10.1592/phco.20.1.105.34662
    1. Welch BJ, Graybeal D, Moe OW, et al. : Biochemical and stone-risk profiles with topiramate treatment. Am J Kidney Dis. 2006;48(4):555–63. 10.1053/j.ajkd.2006.07.003
    1. Maalouf NM, Langston JP, van Ness PC, et al. : Nephrolithiasis in topiramate users. Urol Res. 2011;39(4):303–307. In press. 10.1007/s00240-010-0347-5
    1. Petroff PA, Hander EW, Mason AD, Jr: Ventilatory patterns following burn injury and effect of sulfamylon. J Trauma. 1975;15(8):650–6. 10.1097/00005373-197508000-00005
    1. Scheel PJ, Jr, Whelton A, Rossiter K, et al. : Cholestyramine-induced hyperchloremic metabolic acidosis. J Clin Pharmacol. 1992;32(6):536–8. 10.1177/009127009203200608
    1. Kleinman PK: Letter: Cholestyramine and metabolic acidosis. N Engl J Med. 1974;290(15):861. 10.1056/NEJM197404112901519
    1. Eaves ER, Korman MG: Cholestyramine induced hyperchloremic metabolic acidosis. Aust N Z J Med. 1984;14(5):670–2. 10.1111/j.1445-5994.1984.tb05023.x
    1. Brezina B, Qunibi WY, Nolan CR: Acid loading during treatment with sevelamer hydrochloride: mechanisms and clinical implications. Kidney Int Suppl. 2004;66(90):S39–45. 10.1111/j.1523-1755.2004.09007.x
    1. Qunibi WY, Hootkins RE, McDowell LL, et al. : Treatment of hyperphosphatemia in hemodialysis patients: The Calcium Acetate Renagel Evaluation (CARE Study). Kidney Int. 2004;65(5):1914–26. 10.1111/j.1523-1755.2004.00590.x
    1. Biggar P, Ketteler M: Sevelamer carbonate for the treatment of hyperphosphatemia in patients with kidney failure (CKD III - V). Expert Opin Pharmacother. 2010;11(16):2739–50. 10.1517/14656566.2010.526107
    1. Akizawa T, Origasa H, Kameoka C, et al. : Randomized controlled trial of bixalomer versus sevelamer hydrochloride in hemodialysis patients with hyperphosphatemia. Ther Apher Dial. 2014;18(2):122–31. 10.1111/1744-9987.12068
    2. F1000 Recommendation

    1. Hatakeyama S, Murasawa H, Narita T, et al. : Switching hemodialysis patients from sevelamer hydrochloride to bixalomer: a single-center, non-randomized analysis of efficacy and effects on gastrointestinal symptoms and metabolic acidosis. BMC Nephrol. 2013;14:222. 10.1186/1471-2369-14-222
    2. F1000 Recommendation

    1. DuBose TD: Disorder of Acid-Base Balance. In: Brenner BM editor. Brenner and Rector's The Kidney.8th ed. Philadelphia: Saunders;2007;505–46.
    1. Gennari FJ, Weise WJ: Acid-base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol. 2008;3(6):1861–8. 10.2215/CJN.02450508
    1. Haldane JB, Hill R, Luck JM: Calcium chloride acidosis. J Physiol. 1923;57(5):301–6. 10.1113/jphysiol.1923.sp002067
    1. Madias NE: Lactic acidosis. Kidney Int. 1986;29(3):752–74. 10.1038/ki.1986.62
    1. Melvin L, Wesson D: Lactic Acidosis. In: Dubose TD, Hamm L. Lee, editor. Acid-Base and Electrolyte Disorders: A Companion to Brenner and Rector's The Kidney.Philadelphia: WB Saunders;2002;83–5.
    1. Lalau JD: Lactic acidosis induced by metformin: incidence, management and prevention. Drug Saf. 2010;33(9):727–40. 10.2165/11536790-000000000-00000
    1. Salpeter SR, Greyber E, Pasternak GA, et al. : Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010; (4):CD002967. 10.1002/14651858.CD002967.pub3
    2. F1000 Recommendation

    1. Peters N, Jay N, Barraud D, et al. : Metformin-associated lactic acidosis in an intensive care unit. Crit Care. 2008;12(6):R149. 10.1186/cc7137
    1. Almaleki N, Ashraf M, Hussein MM, et al. : Metformin-associated lactic acidosis in a peritoneal dialysis patient. Saudi J Kidney Dis Transpl. 2015;26(2):325–8. 10.4103/1319-2442.152498
    1. Nyirenda MJ, Sandeep T, Grant I, et al. : Severe acidosis in patients taking metformin--rapid reversal and survival despite high APACHE score. Diabet Med. 2006;23(4):432–5. 10.1111/j.1464-5491.2006.01813.x
    1. Audia P, Feinfeld DA, Dubrow A, et al. : Metformin-induced lactic acidosis and acute pancreatitis precipitated by diuretic, celecoxib, and candesartan-associated acute kidney dysfunction. Clin Toxicol (Phila). 2008;46(2):164–6. 10.1080/15563650701355314
    1. El-Hennawy AS, Jacob S, Mahmood AK: Metformin-associated lactic acidosis precipitated by diarrhea. Am J Ther. 2007;14(4):403–5. 10.1097/01.pap.0000249953.92311.23
    1. Renda F, Mura P, Finco G, et al. : Metformin-associated lactic acidosis requiring hospitalization. A national 10 year survey and a systematic literature review. Eur Rev Med Pharmacol Sci. 2013;17(Suppl 1):45–9.
    2. F1000 Recommendation

    1. Scheen AJ, Paquot N: Metformin revisited: a critical review of the benefit-risk balance in at-risk patients with type 2 diabetes. Diabetes Metab. 2013;39(3):179–90. 10.1016/j.diabet.2013.02.006
    2. F1000 Recommendation

    1. Kajbaf F, Lalau JD: The prognostic value of blood pH and lactate and metformin concentrations in severe metformin-associated lactic acidosis. BMC Pharmacol Toxicol. 2013;14:22. 10.1186/2050-6511-14-22
    2. F1000 Recommendation

    1. Adam WR, O'Brien RC: A justification for less restrictive guidelines on the use of metformin in stable chronic renal failure. Diabet Med. 2014;31(9):1032–8. 10.1111/dme.12515
    2. F1000 Recommendation

    1. Inzucchi SE, Lipska KJ, Mayo H, et al. : Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668–75. 10.1001/jama.2014.15298
    2. F1000 Recommendation

    1. Venos ES, Sigal RJ: My patient's diabetic kidney disease has progressed to stage 4; should I discontinue metformin? Can J Diabetes. 2014;38(5):296–9. 10.1016/j.jcjd.2014.07.225
    2. F1000 Recommendation

    1. Heaf J: Metformin in chronic kidney disease: time for a rethink. Perit Dial Int. 2014;34(4):353–7. 10.3747/pdi.2013.00344
    2. F1000 Recommendation

    1. Kajbaf F, Lalau JD: Mortality rate in so-called "metformin-associated lactic acidosis": a review of the data since the 1960s. Pharmacoepidemiol Drug Saf. 2014;23(11):1123–7. 10.1002/pds.3689
    2. F1000 Recommendation

    1. Palella FJ, Delaney KM, Moorman AC, et al. : Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60. 10.1056/NEJM199803263381301
    1. Gérard Y, Maulin L, Yazdanpanah Y, et al. : Symptomatic hyperlactataemia: an emerging complication of antiretroviral therapy. AIDS. 2000;14(17):2723–30.
    1. Sundar K, Suarez M, Banogon PE, et al. : Zidovudine-induced fatal lactic acidosis and hepatic failure in patients with acquired immunodeficiency syndrome: report of two patients and review of the literature. Crit Care Med. 1997;25(8):1425–30. 10.1097/00003246-199708000-00034
    1. Bissuel F, Bruneel F, Habersetzer F, et al. : Fulminant hepatitis with severe lactate acidosis in HIV-infected patients on didanosine therapy. J Intern Med. 1994;235(4):367–71. 10.1111/j.1365-2796.1994.tb01088.x
    1. Goldfarb-Rumyantzev AS, Jeyakumar A, Gumpeni R, et al. : Lactic acidosis associated with nucleoside analog therapy in an HIV-positive patient. AIDS Patient Care STDS. 2000;14(7):339–42. 10.1089/108729100413194
    1. Kakuda TN: Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther. 2000;22(6):685–708. 10.1016/S0149-2918(00)90004-3
    1. Margolis AM, Heverling H, Pham PA, et al. : A review of the toxicity of HIV medications. J Med Toxicol. 2014;10(1):26–39. 10.1007/s13181-013-0325-8
    1. Bonnet F, Balestre E, Bernardin E, et al. : Risk factors for hyperlactataemia in HIV-infected patients, Aquitaine Cohort, 1999--2003. Antivir Chem Chemother. 2005;16(1):63–7.
    1. Crowther MA, Callaghan W, Hodsman AB, et al. : Dideoxyinosine-associated nephrotoxicity. AIDS. 1993;7(1):131–2.
    1. Vittecoq D, Dumitrescu L, Beaufils H, et al. : Fanconi syndrome associated with cidofovir therapy. Antimicrob Agents Chemother. 1997;41(8):1846.
    1. Nelson M, Azwa A, Sokwala A, et al. : Fanconi syndrome and lactic acidosis associated with stavudine and lamivudine therapy. AIDS. 2008;22(11):1374–6. 10.1097/QAD.0b013e328303be50
    1. Falcó V, Rodríguez D, Ribera E, et al. : Severe nucleoside-associated lactic acidosis in human immunodeficiency virus-infected patients: report of 12 cases and review of the literature. Clin Infect Dis. 2002;34(6):838–46. 10.1086/339041
    1. De Vriese AS, Coster RV, Smet J, et al. : Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis. 2006;42(8):1111–7. 10.1086/501356
    1. Diekema DJ, Jones RN: Oxazolidinone antibiotics. Lancet. 2001;358(9297):1975–82. 10.1016/S0140-6736(01)06964-1
    1. Apodaca AA, Rakita RM: Linezolid-induced lactic acidosis. N Engl J Med. 2003;348(1):86–7. 10.1056/NEJM200301023480123
    1. Wiener M, Guo Y, Patel G, et al. : Lactic acidosis after treatment with linezolid. Infection. 2007;35(4):278–81. 10.1007/s15010-007-6302-x
    1. Bernard L, Stern R, Lew D, et al. : Serotonin syndrome after concomitant treatment with linezolid and citalopram. Clin Infect Dis. 2003;36(9):1197. 10.1086/374558
    1. Pea F, Scudeller L, Lugano M, et al. : Hyperlactacidemia potentially due to linezolid overexposure in a liver transplant recipient. Clin Infect Dis. 2006;42(3):434–5. 10.1086/499533
    1. Ozkaya-Parlakay A, Kara A, Celik M, et al. : Early lactic acidosis associated with linezolid therapy in paediatric patients. Int J Antimicrob Agents. 2014;44(4):334–6. 10.1016/j.ijantimicag.2014.06.017
    2. F1000 Recommendation

    1. Neff TA: Isoniazid toxicity: reports of lactic acidosis and keratitis. Chest. 1971;59(3):245–8. 10.1378/chest.59.3.245
    1. Hankins DG, Saxena K, Faville RJ, Jr, et al. : Profound acidosis caused by isoniazid ingestion. Am J Emerg Med. 1987;5(2):165–6. 10.1016/0735-6757(87)90098-2
    1. Kreisberg RA, Wood BC: Drug and chemical-induced metabolic acidosis. Clin Endocrinol Metab. 1983;12(2):391–411. 10.1016/S0300-595X(83)80048-6
    1. Alvarez FG, Guntupalli KK: Isoniazid overdose: four case reports and review of the literature. Intensive Care Med. 1995;21(8):641–4. 10.1007/BF01711541
    1. Peters JH, Miller KS, Brown P: Studies on the metabolic basis for the genetically determined capacities for isoniazid inactivation in man. J Pharmacol Exp Ther. 1965;150(2):298–304.
    1. Patiala J: The amount of pyridine nucleotides (coenzymes I and II) in blood in experimental tuberculosis before and during isoniazid treatment. Am Rev Tuberc. 1954;70(3):453–64.
    1. Kam PC, Cardone D: Propofol infusion syndrome. Anaesthesia. 2007;62(7):690–701. 10.1111/j.1365-2044.2007.05055.x
    1. Marinella MA: Lactic acidosis associated with propofol. Chest. 1996;109(1):292. 10.1378/chest.109.1.292
    1. Bray RJ: Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8(6):491–9. 10.1046/j.1460-9592.1998.00282.x
    1. Bidani A, Tuazon DM, Heming TA: Regulation of Whole Body Acid-Base Balance. In: Dubose TD, Hamm L. Lee, editor. Acid-Base and Electrolyte Disorders: A Companion to Brenner and Rector's The Kidney Philadelphia: WB Saunders;2002;1–21.
    1. Arena FP, Dugowson C, Saudek CD: Salicylate-induced hypoglycemia and ketoacidosis in a nondiabetic adult. Arch Intern Med. 1978;138(7):1153–4. 10.1001/archinte.1978.03630320085031
    1. Proudfoot AT, Krenzelok EP, Brent J, et al. : Does urine alkalinization increase salicylate elimination? If so, why? Toxicol Rev. 2003;22(3):129–36. 10.2165/00139709-200322030-00001
    1. Fenves AZ, Kirkpatrick HM 3rd, Patel VV, et al. : Increased anion gap metabolic acidosis as a result of 5-oxoproline (pyroglutamic acid): a role for acetaminophen. Clin J Am Soc Nephrol. 2006;1(3):441–7. 10.2215/CJN.01411005
    2. F1000 Recommendation

    1. Emmett M: Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale of two cycles, one an ATP-depleting futile cycle and the other a useful cycle. Clin J Am Soc Nephrol. 2014;9(1):191–200. 10.2215/CJN.07730713
    1. Croal BL, Glen AC, Kelly CJ, et al. : Transient 5-oxoprolinuria (pyroglutamic aciduria) with systemic acidosis in an adult receiving antibiotic therapy. Clin Chem. 1998;44(2):336–40.
    1. Wagner CA, Devuyst O, Bourgeois S, et al. : Regulated acid-base transport in the collecting duct. Pflugers Arch. 2009;458(1):137–56. 10.1007/s00424-009-0657-z
    1. Rodríguez-Soriano J: New insights into the pathogenesis of renal tubular acidosis--from functional to molecular studies. Pediatr Nephrol. 2000;14(12):1121–36. 10.1007/s004670000407
    1. Eiam-Ong S, Kurtzman NA, Sabatini S: Regulation of collecting tubule adenosine triphosphatases by aldosterone and potassium. J Clin Invest. 1993;91(6):2385–92. 10.1172/JCI116471
    1. DuBose TD, Jr: Molecular and pathophysiologic mechanisms of hyperkalemic metabolic acidosis. Trans Am Clin Climatol Assoc. 2000;111:122–33; discussion 133–4.
    1. Cheng HF, Harris RC: Cyclooxygenases, the kidney, and hypertension. Hypertension. 2004;43(3):525–30. 10.1161/01.HYP.0000116221.27079.ea
    1. Weinberg JM, Appel LJ, Bakris G, et al. : Risk of hyperkalemia in nondiabetic patients with chronic kidney disease receiving antihypertensive therapy. Arch Intern Med. 2009;169(17):1587–94. 10.1001/archinternmed.2009.284
    2. F1000 Recommendation

    1. White WB, Bresalier R, Kaplan AP, et al. : Safety and tolerability of the direct renin inhibitor aliskiren in combination with angiotensin receptor blockers and thiazide diuretics: a pooled analysis of clinical experience of 12,942 patients. J Clin Hypertens (Greenwich). 2011;13(7):506–16. 10.1111/j.1751-7176.2011.00438.x
    2. F1000 Recommendation

    1. Sakallı H, Baskın E, Bayrakcı US, et al. : Acidosis and hyperkalemia caused by losartan and enalapril in pediatric kidney transplant recipients. Exp Clin Transplant. 2014;12(4):310–3. 10.6002/ect.2013.0172
    2. F1000 Recommendation

    1. Preston RA, Hirsh MJ MD, Oster MD, Jr, et al. : University of Miami Division of Clinical Pharmacology therapeutic rounds: drug-induced hyperkalemia. Am J Ther. 1998;5(2):125–32. 10.1097/00045391-199803000-00013
    1. Ayub M, Levell MJ: Inhibition of human adrenal steroidogenic enzymes in vitro by imidazole drugs including ketoconazole. J Steroid Biochem. 1989;32(4):515–24. 10.1016/0022-4731(89)90384-1
    1. Ohlsson A, Cedergreen N, Oskarsson A, et al. : Mixture effects of imidazole fungicides on cortisol and aldosterone secretion in human adrenocortical H295R cells. Toxicology. 2010;275(1–3):21–8. 10.1016/j.tox.2010.05.013
    1. Davies DL, Wilson GM: Diuretics: mechanism of action and clinical application. Drugs. 1975;9(3):178–226. 10.2165/00003495-197509030-00003
    1. Kleyman TR, Roberts C, Ling BN: A mechanism for pentamidine-induced hyperkalemia: inhibition of distal nephron sodium transport. Ann Intern Med. 1995;122(2):103–6. 10.7326/0003-4819-122-2-199501150-00004
    1. Schlanger LE, Kleyman TR, Ling BN: K +-sparing diuretic actions of trimethoprim: inhibition of Na + channels in A6 distal nephron cells. Kidney Int. 1994;45(4):1070–6. 10.1038/ki.1994.143
    1. Velázquez H, Perazella MA, Wright FS, et al. : Renal mechanism of trimethoprim-induced hyperkalemia. Ann Intern Med. 1993;119(4):296–301. 10.7326/0003-4819-119-4-199308150-00008
    1. Caliskan Y, Kalayoglu-Besisik S, Sargin D, et al. : Cyclosporine-associated hyperkalemia: report of four allogeneic blood stem-cell transplant cases. Transplantation. 2003;75(7):1069–72. 10.1097/01.TP.0000057241.69355.59
    1. Lea JP, Sands JM, McMahon SJ, et al. : Evidence that the inhibition of Na +/K +-ATPase activity by FK506 involves calcineurin. Kidney Int. 1994;46(3):647–52. 10.1038/ki.1994.317
    1. Kim YH, Kwon TH, Christensen BM, et al. : Altered expression of renal acid-base transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol. 2003;285(6):F1244–57. 10.1152/ajprenal.00176.2003
    1. Roscoe JM, Goldstein MB, Halperin ML, et al. : Lithium-induced impairment of urine acidification. Kidney Int. 1976;9(4):344–50. 10.1038/ki.1976.40
    1. Grünfeld JP, Rossier BC: Lithium nephrotoxicity revisited. Nat Rev Nephrol. 2009;5(5):270–6. 10.1038/nrneph.2009.43
    1. Navarro JF, Quereda C, Quereda C, et al. : Nephrogenic diabetes insipidus and renal tubular acidosis secondary to foscarnet therapy. Am J Kidney Dis. 1996;27(3):431–4. 10.1016/S0272-6386(96)90369-8
    1. Hamm LL, Nakhoul N: Renal Acidification. In: Brenner BM, editor. Brenner and Rector's The Kidney Philadelphia: Saunders;2007;248–69.
    1. Malik A, Abraham P, Malik N: Acute renal failure and Fanconi syndrome in an AIDS patient on tenofovir treatment--case report and review of literature. J Infect. 2005;51(2):E61–5. 10.1016/j.jinf.2004.08.031
    1. Hall AM, Hendry BM, Nitsch D, et al. : Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am J Kidney Dis. 2011;57(5):773–80. 10.1053/j.ajkd.2011.01.022
    1. Herlitz LC, Mohan S, Stokes MB, et al. : Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int. 2010;78(11):1171–7. 10.1038/ki.2010.318
    2. F1000 Recommendation

    1. Lucey JM, Hsu P, Ziegler JB: Tenofovir-related Fanconi's syndrome and osteomalacia in a teenager with HIV. BMJ Case Rep. 2013;2013: pii: bcr2013008674. 10.1136/bcr-2013-008674
    2. F1000 Recommendation

    1. Hall AM, Edwards SG, Lapsley M, et al. : Subclinical tubular injury in HIV-infected individuals on antiretroviral therapy: a cross-sectional analysis. Am J Kidney Dis. 2009;54(6):1034–42. 10.1053/j.ajkd.2009.07.012
    2. F1000 Recommendation

    1. Cachat F, Nenadov-Beck M, Guignard JP: Occurrence of an acute Fanconi syndrome following cisplatin chemotherapy. Med Pediatr Oncol. 1998;31(1):40–1. 10.1002/(SICI)1096-911X(199807)31:1<40::AID-MPO11>;2-6
    1. Sahni V, Choudhury D, Ahmed Z: Chemotherapy-associated renal dysfunction. Nat Rev Nephrol. 2009;5(8):450–62. 10.1038/nrneph.2009.97
    1. Zamlauski-Tucker MJ, Morris ME, Springate JE: Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol. 1994;129(1):170–5. 10.1006/taap.1994.1241
    1. Stöhr W, Paulides M, Bielack S, et al. : Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer. 2007;48(4):447–52. 10.1002/pbc.20858
    1. Leem AY, Kim HS, Yoo BW, et al. : Ifosfamide-induced Fanconi syndrome with diabetes insipidus. Korean J Intern Med. 2014;29(2):246–9. 10.3904/kjim.2014.29.2.246
    2. F1000 Recommendation

    1. Watanabe T, Yoshikawa H, Yamazaki S, et al. : Secondary renal Fanconi syndrome caused by valproate therapy. Pediatr Nephrol. 2005;20(6):814–7. 10.1007/s00467-005-1827-7
    1. Knorr M, Schaper J, Harjes M, et al. : Fanconi syndrome caused by antiepileptic therapy with valproic Acid. Epilepsia. 2004;45(7):868–71. 10.1111/j.0013-9580.2004.05504.x
    1. Endo A, Fujita Y, Fuchigami T, et al. : Fanconi syndrome caused by valproic acid. Pediatr Neurol. 2010;42(4):287–90. 10.1016/j.pediatrneurol.2009.12.003
    2. F1000 Recommendation

    1. Wegienka LC, Weller JM: Renal tubular acidosis caused by degraded tetracycline. Arch Intern Med. 1964;114(2):232–5. 10.1001/archinte.1964.03860080082007
    1. Cleveland WW, Adams WC, Mann JB, et al. : Acquired Fanconi syndrome following degraded tetracycline. J Pediatr. 1965;66(2):333–42. 10.1016/S0022-3476(65)80190-1
    1. Montoliu J, Carrera M, Darnell A, et al. : Lactic acidosis and Fanconi's syndrome due to degraded tetracycline. Br Med J (Clin Res Ed). 1981;283(6306):1576–7. 10.1136/bmj.283.6306.1576-a
    1. Izzedine H, Launay-Vacher V, Isnard-Bagnis C, et al. : Drug-induced Fanconi's syndrome. Am J Kidney Dis. 2003;41(2):292–309. 10.1053/ajkd.2003.50037
    1. Banerjee S, Narayanan M, Gould K: Monitoring aminoglycoside level. BMJ. 2012;345:e6354. 10.1136/bmj.e6354
    1. Grangé S, Bertrand DM, Guerrot D, et al. : Acute renal failure and Fanconi syndrome due to deferasirox. Nephrol Dial Transplant. 2010;25(7):2376–8. 10.1093/ndt/gfq224
    2. F1000 Recommendation

    1. Papadopoulos N, Vasiliki A, Aloizos G, et al. : Hyperchloremic metabolic acidosis due to deferasirox in a patient with beta thalassemia major. Ann Pharmacother. 2010;44(1):219–21. 10.1345/aph.1M440
    2. F1000 Recommendation

    1. Rafat C, Fakhouri F, Ribeil JA, et al. : Fanconi syndrome due to deferasirox. Am J Kidney Dis. 2009;54(5):931–4. 10.1053/j.ajkd.2009.03.013
    2. F1000 Recommendation

    1. Murphy N, Elramah M, Vats H, et al. : A case report of deferasirox-induced kidney injury and Fanconi syndrome. WMJ. 2013;112(1):177–80.
    2. F1000 Recommendation

    1. Dell'Orto VG, Bianchetti MG, Brazzola P: Hyperchloraemic metabolic acidosis induced by the iron chelator deferasirox: a case report and review of the literature. J Clin Pharm Ther. 2013;38(6):526–7. 10.1111/jcpt.12095
    2. F1000 Recommendation

    1. Häring N, Mähr HS, Mündle M, et al. : Early detection of renal damage caused by fumaric acid ester therapy by determination of urinary β2-microglobulin. Br J Dermatol. 2011;164(3):648–51. 10.1111/j.1365-2133.2010.10171.x
    1. Rago RP, Miles JM, Sufit RL, et al. : Suramin-induced weakness from hypophosphatemia and mitochondrial myopathy. Association of suramin with mitochondrial toxicity in humans. Cancer. 1994;73(7):1954–9. 10.1002/1097-0142(19940401)73:7<1954::AID-CNCR2820730729>;2-H
    1. François H, Coppo P, Hayman JP, et al. : Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis. 2008;51(2):298–301. 10.1053/j.ajkd.2007.10.039
    1. Launay-Vacher V, Izzedine H, Karie S, et al. : Renal tubular drug transporters. Nephron Physiol. 2006;103(3):p97–106. 10.1159/000092212
    1. Ghiculescu RA, Kubler PA: Aminoglycoside-associated Fanconi syndrome. Am J Kidney Dis. 2006;48(6):e89–93. 10.1053/j.ajkd.2006.08.009
    1. Gainza FJ, Minguela JI, Lampreabe I: Aminoglycoside-associated Fanconi's syndrome: an underrecognized entity. Nephron. 1997;77(2):205–11. 10.1159/000190274
    1. Lopez-Novoa JM, Quiros Y, Vicente L, et al. : New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79(1):33–45. 10.1038/ki.2010.337

Source: PubMed

3
Se inscrever