Obesity-associated oxidative stress: strategies finalized to improve redox state

Isabella Savini, Maria Valeria Catani, Daniela Evangelista, Valeria Gasperi, Luciana Avigliano, Isabella Savini, Maria Valeria Catani, Daniela Evangelista, Valeria Gasperi, Luciana Avigliano

Abstract

Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.

Figures

Figure 1
Figure 1
Mechanisms modulating oxidant/antioxidant balance in obesity. On the left-hand side are shown mechanisms underlying oxidative stress in obesity and obesity-associated complications, while on the right-hand side are shown strategies improving body antioxidant machinery (see text for details). Dotted lines: inhibitory effect. Solid lines: stimulatory effect. AGEs: advanced glycation end products; ATF: NF-κB, activating transcription factor; CPT2: carnitine palmitoyltransferase 2; CREB: cyclic AMP response element binding; ER: endoplasmic reticulum; FAS: fatty acid synthase; FoxO: forkhead box, sub-group O; HO-1: heme oxygenase-1; iNOS: inducible nitric oxide synthase; LPS: lipopolysaccharide MCP-1: monocyte chemotactic protein-1; miR: microRNA; NF-κB: nuclear factor-κB; Nox: NADPH oxidase; PKC: protein kinase C; PPAR-α: peroxisome proliferator-activated receptor-α; SCD1: stearoyl-CoA desaturase-1; SIRT: sirtuin; SREBP1: sucrose responsive element binding protein1; STAT3: signal transducer and activator of transcription 3; TGF-β: transforming growth factor-β; TNF-α: tumor necrosis factor-α.

References

    1. WHO. World Health Organization Fact Sheet for World Wide Prevalence of Obesity. [(accessed on 11 February 2013)]. Available online: .
    1. Fernández-Sánchez A., Madrigal-Santillán E., Bautista M., Esquivel-Soto J., Morales-González A., Esquivel-Chirino C., Durante-Montiel I., Sánchez-Rivera G., Valadez-Vega C., Morales-González J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011;12:3117–3132.
    1. Nishida C., Ko G.T., Kumanyika S. Body fat distribution and noncommunicable diseases in populations: Overview of the 2008 WHO expert consultation on waist circumference and waist-hip ratio. Eur. J. Clin. Nutr. 2010;64:2–5.
    1. Lear S.A., James P.T., Ko G.T., Kumanyika S. Appropriateness of waist circumference and waist-to-hip ratio cutoffs for different ethnic groups. Eur. J. Clin. Nutr. 2010;64:42–61.
    1. Pérez-Escamilla R., Obbagy J.E., Altman J.M., Essery E.V., McGrane M.M., Wong Y.P., Spahn J.M., Williams C.L. Dietary energy density and body weight in adults and children: A systematic review. J. Acad. Nutr. Diet. 2012;112:671–684.
    1. Coutinho G.V., Coutinho F.R., Faiad J.Z., Takii M.S., de Limareis S.R., Ignácio-Souza L.M., Paiva A.A., Latorraca M.Q., Gomes-da-Silva M.H., Martins M.S. Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction. Nutr. Metab. 2013;10:5.
    1. Winter Y., Sankowski R., Back T. Genetic determinants of obesity and related vascular diseases. Vitam. Horm. 2013;91:29–48.
    1. Drewnowski A. Obesity, diets, and social inequalities. Nutr. Rev. 2009;67:S36–S39.
    1. Delrue M.A., Michaud J.L. Fat chance: Genetic syndromes with obesity. Clin. Genet. 2004;66:83–93.
    1. Stratakis C.A. Cushing syndrome in pediatrics. Endocrinol. Metab. Clin. North. Am. 2012;41:793–803.
    1. Hasnain M.W., Victor R.V., Hollett B. Weight gain and glucose dysregulation with second-generation antipsychotics and antidepressants: A review for primary care physicians. Postgrad. Med. 2012;124:154–167.
    1. Warolin J., Coenen K.R., Kantor J.L., Whitaker L.E., Wang L., Acra S.A., Roberts L.J., 2nd, Buchowski M.S. The relationship of oxidative stress, adiposity and metabolic risk factors in healthy Black and White American youth. Pediatr. Obes. 2013 doi: 10.1111/j.2047-6310.2012.00135.
    1. Tran B., Oliver S., Rosa J., Galassetti P. Aspects of inflammation and oxidative stress in pediatric obesity and type 1 diabetes: An overview of ten years of studies. Exp. Diabetes Res. 2012 doi: 10.1155/2012/683680.
    1. Krzystek-Korpacka M., Patryn E., Boehm D., Berdowska I., Zielinski B., Noczynska A. Advanced oxidation protein products (AOPPs) in juvenile overweight and obesity prior to and following weight reduction. Clin. Biochem. 2008;41:943–949.
    1. Codoñer-Franch P., Tavárez-Alonso S., Murria-Estal R., Tortajada-Girbés M., Simó-Jordá R., Alonso-Iglesias E. Elevated advanced oxidation protein products (AOPPs) indicate metabolic risk in severely obese children. Nutr. Metab. Cardiovasc. Dis. 2012;22:237–243.
    1. Hermsdorff H.H., Barbosa K.B., Volp A.C., Puchau B., Bressan J., Zulet M.A., Martínez J.A. Gender-specific relationships between plasma oxidized low-density lipoprotein cholesterol, total antioxidant capacity, and central adiposity indicators. Eur. J. Prev. Cardiol. 2012 doi: 10.1177/2047487312472420.
    1. Karaouzene N., Merzouk H., Aribi M., Merzouk S.A., Berrouiguet A.Y., Tessier C., Narce M. Effects of the association of aging and obesity on lipids, lipoproteins and oxidative stress biomarkers: A comparison of older with young men. Nutr. Metab. Cardiovasc. Dis. 2011;21:792–799.
    1. Sies H., Stahl W., Sevanian A. Nutritional, dietary and postprandial oxidative stress. J. Nutr. 2005;135:969–972.
    1. Dandona P., Ghanim H., Chaudhuri A., Dhindsa S., Kim S.S. Macronutrient intake induces oxidative and inflammatory stress: Potential relevance to atherosclerosis and insulin resistance. Exp. Mol. Med. 2010;42:245–253.
    1. Serra D., Mera P., Malandrino M.I., Mir J.F., Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal. 2012 doi: 10.1089/ars.2012.4875.
    1. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004;114:1752–1761.
    1. Lee H., Lee Y.J., Choi H., Ko E.H., Kim J.W. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J. Biol. Chem. 2009;284:10601–10609.
    1. Higuchi M., Dusting G.J., Peshavariya H., Jiang F., Hsiao S.T., Chan E.C., Liu G.S. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box o1 mediated upregulation of antioxidant enzymes. Stem. Cells Dev. 2013;22:878–888.
    1. Horvath T.L., Andrews Z.B., Diano S. Fuel utilization by hypothalamic neurons: Roles for ROS. Trends Endocrinol. Metab. 2009;20:78–87.
    1. Mlinar B., Marc J. New insights into adipose tissue dysfunction in insulin resistance. Clin. Chem. Lab. Med. 2011;49:1925–1935.
    1. Patel C., Ghanim H., Ravishankar S., Sia C.L., Viswanathan P., Mohanty P., Dandona P. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J. Clin. Endocrinol. Metab. 2007;92:4476–4479.
    1. Bełtowski J. Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin. Exp. Pharmacol. Physiol. 2012;39:168–178.
    1. Bondia-Pons I., Ryan L., Martinez J.A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 2012;68:701–711.
    1. Chrysohoou C., Panagiotakos D.B., Pitsavos C., Skoumas I., Papademetriou L., Economou M., Stefanadis C. The implication of obesity on total antioxidant capacity in apparently healthy men and women: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2007;17:590–597.
    1. Strauss R.S. Comparison of serum concentrations of -tocopherol and -carotene in a cross-sectional sample of obese and nonobese children (NHANES III) J. Pediatr. 1999;134:160–165.
    1. Bryan S., Baregzay B., Spicer D., Singal P.K., Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can. J. Physiol. Pharmacol. 2013;91:22–30.
    1. Dandona P., Aljada A., Chaudhuri A., Mohanty P., Garg R. Metabolic syndrome: A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–1454.
    1. Crujeiras A.B., Díaz-Lagares A., Carreira M.C., Amil M., Casanueva F.F. Oxidative stress associated to dysfunctional adipose tissue: A potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic. Res. 2013;47:243–256.
    1. Tzanetakou I.P., Katsilambros N.L., Benetos A., Mikhailidis D.P., Perrea D.N. “Is obesity linked to aging?”: Adipose tissue and the role of telomeres. Ageing Res. Rev. 2012;11:220–229.
    1. Bigornia S.J., Mott M.M., Hess D.T., Apovian C.M., McDonnell M.E., Duess M.A., Kluge M.A., Fiscale A.J., Vita J.A., Gokce N. Long-term successful weight loss improves vascular endothelial function in severely obese individuals. Obesity. 2010;18:754–759.
    1. Sofi F., Abbate R., Gensini G.F., Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010;92:1189–1196.
    1. Arora T., Singh S., Sharma R.K. Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition. 2013;29:591–596.
    1. Shen J., Obin M.S., Zhao L. The gut microbiota, obesity and insulin resistance. Mol. Aspects Med. 2013;34:39–58.
    1. Mente A., de Koning L., Shannon H.S., Anand S.S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 2009;169:659–669.
    1. Calder P.C., Ahluwalia N., Brouns F., Buetler T., Clement K., Cunningham K., Esposito K., Jönsson L.S., Kolb H., Lansink M., et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011;106:S5–S78.
    1. González-Castejón M., Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacol. Res. 2011;64:438–455.
    1. Chae C.U., Albert C.M., Moorthy M.V., Lee I.M., Buring J.E. Vitamin E supplementation and the risk of heart failure in women. Circ. Heart Fail. 2012;5:176–182.
    1. Lin J., Cook N.R., Albert C., Zaharris E., Gaziano J.M., van Denburgh M., Buring J.E., Manson J.E. Vitamins C and E and beta carotene supplementation and cancer risk: A randomized controlled trial. J. Natl. Cancer Inst. 2009;10:14–23.
    1. Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012 doi: 10.1002/14651858.
    1. Halliwell B. Free radicals and antioxidants: Updating a personal view. Nutr. Rev. 2012;70:257–265.
    1. Pinchuk I., Shoval H., Dotan Y., Lichtenberg D. Evaluation of antioxidants: Scope, limitations and relevance of assays. Chem. Phys. Lipids. 2012;165:638–647.
    1. Rindler P.M., Plafker S.M., Szweda L.I., Kinter M. High dietary fat selectively increases catalase expression within cardiac mitochondria. J. Biol. Chem. 2013;288:1979–1990.
    1. Lee M.C. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J. Clin. Biochem. Nutr. 2013;52:1–8.
    1. Khoo N.K., Cantu-Medellin N., Devlin J.E., St. Croix C.M., Watkins S.C., Fleming A.M., Champion H.C., Mason R.P., Freeman B.A., Kelley E.E. Obesity-induced tissue free radical generation: An in vivo immuno-spin trapping study. Free Radic. Biol. Med. 2012;52:2312–2319.
    1. Komosinska-Vassev K., Olczyk P., Winsz-Szczotka K., Klimek K., Olczyk K. Plasma biomarkers of oxidative and AGE-mediated damage of proteins and glycosaminoglycans during healthy ageing: A possible association with ECM metabolism. Mech. Ageing Dev. 2012;133:538–548.
    1. Dorjgochoo T., Gao Y.T., Chow W.H., Shu X.O., Yang G., Cai Q., Rothman N., Cai H., Li H., Deng X., et al. Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself. Am. J. Clin. Nutr. 2012;96:405–414.
    1. D’Archivio M., Annuzzi G., Varì R., Filesi C., Giacco R., Scazzocchio B., Santangelo C., Giovannini C., Rivellese A.A., Masella R. Predominant role of obesity/insulin resistance in oxidative stress development. Eur. J. Clin. Invest. 2012;42:70–78.
    1. Keaney J.F., Jr, Larson M.G., Vasan R.S., Wilson P.W., Lipinska I., Corey D., Massaro J.M., Sutherland P., Vita J.A., Benjamin E.J. Framingham Study. Obesity and systemic oxidative stress: Clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 2003;23:434–439.
    1. Ferretti G., Bacchetti T., Masciangelo S., Bicchiega V. HDL-paraoxonase and membrane lipid peroxidation: A comparison between healthy and obese subjects. Obesity. 2010;18:1079–1084.
    1. Aslan M., Horoz M., Sabuncu T., Celik H., Selek S. Serum paraoxonase enzyme activity and oxidative stress in obese subjects. Pol. Arch. Med. Wewn. 2011;121:181–186.
    1. Il’yasova D., Wang F., Spasojevic I., Base K., D’Agostino R.B., Jr, Wagenknecht L.E. Urinary F2-isoprostanes, obesity, and weight gain in the IRAS cohort. Obesity. 2012;20:1915–1921.
    1. Kanaya A.M., Wassel C.L., Stoddard P.J., Harris T.B., Cummings S.R., Kritchevsky S.B., Goodpaster B.H., Green C., Satterfield S., Gross M.D. F2-isoprostanes and adiposity in older adults. Obesity. 2011;19:861–867.
    1. Freeman L.R., Zhang L., Nair A., Dasuri K., Francis J., Fernandez-Kim S.O., Bruce-Keller A.J., Keller J.N. Obesity increases cerebrocortical reactive oxygen species and impairs brain function. Free Radic. Biol. Med. 2013;56:226–233.
    1. Yuzefovych L.V., Musiyenko S.I., Wilson G.L., Rachek L.I. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 2013;8:e54059.
    1. Wang S., Kaufman R.J. The impact of the unfolded protein response on human disease. J. Cell. Biol. 2012;197:857–867.
    1. Pou K.M., Massaro J.M., Hoffmann U., Vasan R.S., Maurovich-Horvat P., Larson M.G., Keaney J.F., Jr, Meigs J.B., Lipinska I., Kathiresan S., et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study. Circulation. 2007;116:1234–1241.
    1. Pradhan A.D., Manson J.E., Rifai N., Buring J.E., Ridker P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286:327–334.
    1. Al-Aubaidy H.A., Jelinek H.F. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur. J. Endocrinol. 2011;164:899–904.
    1. Kilhovd B.K., Juutilainen A., Lehto S., Rönnemaa T., Torjesen P.A., Hanssen K.F., Laakso M. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia. 2007;50:1409–1417.
    1. Nikolaidis M.G., Kerksick C.M., Lamprecht M., McAnulty S.R. Redox biology of exercise. Oxid. Med. Cell Longev. 2012 doi: 10.1155/2012/407978.
    1. Gutierrez-Lopez L., Garcia-Sanchez J.R., Rincon-Viquez Mde J., Lara-Padilla E., Sierra-Vargas M.P., Olivares-Corichi I.M. Hypocaloric diet and regular moderate aerobic exercise is an effective strategy to reduce anthropometric parameters and oxidative stress in obese patients. Obes. Facts. 2012;5:12–22.
    1. Brown L.A., Kerr C.J., Whiting P., Finer N., McEneny J., Ashton T. Oxidant stress in healthy normal-weight, overweight, and obese individuals. Obesity. 2009;17:460–466.
    1. Stefanović A., Kotur-Stevuljević J., Spasić S., Bogavac-Stanojević N., Bujisić N. The influence of obesity on the oxidative stress status and the concentration of leptin in type 2 diabetes mellitus patients. Diabetes Res. Clin. Pract. 2008;79:156–163.
    1. Viroonudomphol D., Pongpaew P., Tungtrongchitr R., Phonrat B., Supawan V., Vudhivai N., Schelp F.P. Erythrocyte antioxidant enzymes and blood pressure in relation to overweight and obese Thai in Bangkok. Southeast Asian J. Trop. Med. Public Health. 2000;31:325–334.
    1. Mittal P.C., Kant R. Correlation of increased oxidative stress to body weight in disease-free post menopausal women. Clin. Biochem. 2009;42:1007–1011.
    1. Olivares-Corichi I.M., Viquez M.J., Gutierrez-Lopez L., Ceballos-Reyes G.M., Garcia-Sanchez J.R. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm. Metab. Res. 2011;43:748–753.
    1. Bougoulia M., Triantos A., Koliakos G. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones. 2006;5:192–199.
    1. Tinahones F.J., Murri-Pierri M., Garrido-Sánchez L., García-Almeida J.M., García-Serrano S., García-Arnés J., García-Fuentes E. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity. 2009;17:240–246.
    1. Lim S., Won H., Kim Y., Jang M., Jyothi K.R., Kim Y., Dandona P., Ha J., Kim S.S. Antioxidant enzymes induced by repeated intake of excess energy in the form of high-fat, high-carbohydrate meals are not sufficient to block oxidative stress in healthy lean individuals. Br. J. Nutr. 2011;106:1544–1551.
    1. Adachi T., Toishi T., Wu H., Kamiya T., Hara H. Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep. 2009;14:34–40.
    1. Via M. The malnutrition of obesity: Micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012 doi: 10.5402/2012/103472.
    1. Ortega R.M., Rodríguez-Rodríguez E., Aparicio A., Jiménez-Ortega A.I., Palmeros C., Perea J.M., Navia B., López-Sobaler A.M. Young children with excess of weight show an impaired selenium status. Int. J. Vitam. Nutr. Res. 2012;82:121–129.
    1. Weisstaub G., Hertrampf E., López de Romaña D., Salazar G., Bugueño C., Castillo-Duran C. Plasma zinc concentration, body composition and physical activity in obese preschool children. Biol. Trace Elem. Res. 2007;118:167–174.
    1. Kaidar-Person O., Person B., Szomstein S., Rosenthal R.J. Nutritional deficiencies in morbidly obese patients: A new form of malnutrition? Part B: Minerals. Obes. Surg. 2008;18:1028–1034.
    1. Schleicher R.L., Carroll M.D., Ford E.S., Lacher D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES) Am. J. Clin. Nutr. 2009;90:1252–1263.
    1. Harnroongroj T., Jintaridhi P., Vudhivai N., Pongpaew P., Tungtrongchitr R., Phonrat B., Changbumrung S., Schelp F.P. B vitamins, vitamin C and hematological measurements in overweight and obese Thais in Bangkok. J. Med. Assoc. Thai. 2002;85:17–25.
    1. Reitman A., Friedrich I., Ben-Amotz A., Levy Y. Low plasma antioxidants and normal plasma B vitamins and homocysteine in patients with severe obesity. Isr. Med. Assoc. J. 2002;4:590–593.
    1. Kaidar-Person O., Person B., Szomstein S., Rosenthal R.J. Nutritional deficiencies in morbidly obese patients: A new form of malnutrition? Part A: Vitamins. Obes. Surg. 2008;18:870–876.
    1. Andersen L.F., Jacobs D.R., Jr, Gross M.D., Schreiner P.J., Dale Williams O., Lee D.H. Longitudinal associations between body mass index and serum carotenoids: The CARDIA study. Br. J. Nutr. 2006;95:358–365.
    1. Aasheim E.T., Bøhmer T. Low preoperative vitamin levels in morbidly obese patients: A role of systemic inflammation. Surg. Obes. Relat. Dis. 2008;4:779–780.
    1. Canoy D., Wareham N., Welch A., Bingham S., Luben R., Day N., Khaw K.T. Plasma ascorbic acid concentrations and fat distribution in 19,068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am. J. Clin. Nutr. 2005;82:1203–1209.
    1. Coen P.M., Goodpaster B.H. Role of intramyocelluar lipids in human health. Trends Endocrinol. Metab. 2012;23:391–398.
    1. Amati F. Revisiting the diacylglycerol-induced insulin resistance hypothesis. Obes. Rev. 2012;13:S40–S50.
    1. Diaz-Meco M.T., Moscat J. The atypical PKCs in inflammation: NF-κB and beyond. Immunol. Rev. 2012;246:154–167.
    1. Piperi C., Adamopoulos C., Dalagiorgou G., Diamanti-Kandarakis E., Papavassiliou A.G. Crosstalk between advanced glycation and endoplasmic reticulum stress: Emerging therapeutic targeting for metabolic diseases. J. Clin. Endocrinol. Metab. 2012;97:2231–2242.
    1. Boldin M.P., Baltimore D. MicroRNAs, new effectors and regulators of NF-κB. Immunol. Rev. 2012;246:205–220.
    1. Williams M.D., Mitchell G.M. MicroRNAs in insulin resistance and obesity. Exp. Diabetes Res. 2012 doi: 10.1155/2012/484696.
    1. Hulsmans M., de Keyzer D., Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 2011;25:2515–2527.
    1. Surmi B.K., Hasty A.H. The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascul. Pharmacol. 2010;52:27–36.
    1. Xue P., Hou Y., Chen Y., Yang B., Fu J., Zheng H., Yarborough K., Woods C.G., Liu D., Yamamoto M., et al. Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes. 2012;62:845–854.
    1. Whaley-Connell A., Sowers J.R. Oxidative stress in the cardiorenal metabolic syndrome. Curr. Hypertens. Rep. 2012;14:360–365.
    1. Guo F., Chen X.L., Wang F., Liang X., Sun Y.X., Wang Y.J. Role of angiotensin II type 1 receptor in angiotensin II-induced cytokine production in macrophages. J. Interferon Cytokine Res. 2011;31:351–361.
    1. Ceci R., Sabatini S., Duranti G., Savini I., Avigliano L., Rossi A. Acute, but not chronic, leptin treatment induces acyl-CoA oxidase in C2C12 myotubes. Eur. J. Nutr. 2007;46:364–368.
    1. Tilg H., Moschen A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006;6:772–783.
    1. Rahimi R.S., Landaverde C. Nonalcoholic Fatty liver disease and the metabolic syndrome: Clinical implications and treatment. Nutr. Clin. Pract. 2013;28:40–51.
    1. Harman-Boehm I., Bluher M., Redel H., Sion-Vardy N., Ovadia S., Avinoach E., Shai I., Kloting N., Stumvoll M., Bashan N., et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: Effect of regional adiposity and the co-morbidities of obesity. J. Clin. Endocrinol. Metab. 2007;92:2240–2247.
    1. Fujita K., Nishizawa H., Funahashi T., Shimomura I., Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ. J. 2006;70:1437–1442.
    1. Styskal J., van Remmen H., Richardson A., Salmon A.B. Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic. Biol. Med. 2012;52:46–58.
    1. Chetboun M., Abitbol G., Rozenberg K., Rozenfeld H., Deutsch A., Sampson S.R., Rosenzweig T. Maintenance of redox state and pancreatic beta-cell function: Role of leptin and adiponectin. J. Cell. Biochem. 2012;113:1966–1976.
    1. Coutinho T., Goel K., Corrêa de Sá D., Carter R.E., Hodge D.O., Kragelund C., Kanaya A.M., Zeller M., Park J.S., Kober L., et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: Role of “normal weight central obesity”. J. Am. Coll. Cardiol. 2013;61:553–560.
    1. Mandavia C.H., Pulakat L., de Marco V., Sowers J.R. Over-nutrition and metabolic cardiomyopathy. Metabolism. 2012;61:1205–1210.
    1. Standl E. Dysglycemia and abdominal obesity. Curr. Vasc. Pharmacol. 2012;10:678–679.
    1. Abhijit S., Bhaskaran R., Narayanasamy A., Chakroborty A., Manickam N., Dixit M., Mohan V., Balasubramanyam M. Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress. Mol. Cell Biochem. 2013;373:95–105.
    1. Anfossi G., Russo I., Massucco P., Mattiello L., Doronzo G., de Salve A., Trovati M. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: Possible role in platelet hyperactivation in obesity. Eur. J. Clin. Invest. 2004;34:482–489.
    1. Declercq V., Enns J., Yeganeh A., Taylor C., Zahradka P. Modulation of cardiovascular function by adipokines. Cardiovasc. Hematol. Disord. Drug. Targets. 2012;13:59–72.
    1. Shen W., Tian C., Chen H., Yang Y., Zhu D., Gao P., Liu J. Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radic. Biol. Med. 2013;55:73–82.
    1. Yang Z., Ming X.F. mTOR signalling: The molecular interface connecting metabolic stress, aging and cardiovascular diseases. Obes. Rev. 2012;13:58–68.
    1. Bailey-Downs L.C., Tucsek Z., Toth P., Sosnowska D., Gautam T., Sonntag W.E., Csiszar A., Ungvari Z. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: A paracrine mechanism contributing to vascular redox dysregulation and inflammation. J. Gerontol. A. 2012 doi: 10.1093/gerona/gls238.
    1. Lee S.D., Ju G., Choi J.A., Kim J.W., Yoon I.Y. The association of oxidative stress with central obesity in obstructive sleep apnea. Sleep Breath. 2012;16:511–517.
    1. Jelic S., Lederer D.J., Adams T., Padeletti M., Colombo P.C., Factor P.H., Le Jemtel T.H. Vascular inflammation in obesity and sleep apnea. Circulation. 2010;121:1014–1021.
    1. Dyugovskaya L., Lavie P., Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am. J. Respir. Crit. Care Med. 2002;165:934–939.
    1. Fujihara S., Mori H., Kobara H., Nishiyama N., Kobayashi M., Oryu M., Masaki T. Metabolic syndrome, obesity, and gastrointestinal cancer. Gastroenterol. Res. Pract. 2012 doi: 10.1155/2012/483623.
    1. Calle E.E., Rodriguez C., Walker-Thurmond K., Thun M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults. N. Engl. J. Med. 2003;348:1625–1638.
    1. Vucenik I., Stains J.P. Obesity and cancer risk: Evidence, mechanisms, and recommendations. Ann. N. Y. Acad. Sci. 2012;1271:37–43.
    1. Gillett M., Royle P., Snaith A., Scotland G., Poobalan A., Imamura M., Black C., Boroujerdi M., Jick S., Wyness L., et al. Non-pharmacological interventions to reduce the risk of diabetes in people with impaired glucose regulation: A systematic review and economic evaluation. Health Technol. Assess. 2012;16:1–236.
    1. Pendyala S., Neff L.M., Suárez-Fariñas M., Holt P.R. Diet-induced weight loss reduces colorectal inflammation: Implications for colorectal carcinogenesis. Am. J. Clin. Nutr. 2011;93:234–242.
    1. Solá E., Navarro S., Medina P., Vayá A., Estellés A., Hernández-Mijares A., España F. Activated protein C levels in obesity and weight loss influence. Thromb. Res. 2009;123:697–700.
    1. Crujeiraseiras A.B., Parra D., Milagro F.I., Goyenechea E., Larrarte E., Margareto J., Martínez J.A. Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: A nutrigenomics study. OMICS. 2008;12:251–261.
    1. Crujeiraseiras A.B., Parra D., Goyenechea E., Abete I., Martínez J.A. Tachyphylaxis effects on postprandial oxidative stress and mitochondrial-related gene expression in overweight subjects after a period of energy restriction. Eur. J. Nutr. 2009;48:341–347.
    1. Dandona P., Mohanty P., Ghanim H., Aljada A., Browne R., Hamouda W., Prabhala A., Afzal A., Garg R. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J. Clin. Endocrinol. Metab. 2001;86:355–362.
    1. Kuennen M.R. Interaction between race and weight loss intervention strategy: Effect on markers of inflammation and fat distribution in overweight women. Obesity. 2012;20:1335–1336.
    1. You J.S., Park J.Y., Zhao X., Jeong J.S., Choi M.J., Chang K.J. Relationship among serum taurine, serum adipokines, and body composition during 8-week human body weight control program. Adv. Exp. Med. Biol. 2013;776:113–120.
    1. Crujeiraseiras A.B., Parra D., Goyenechea E., Martínez J.A. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur. J. Clin. Invest. 2008;38:672–678.
    1. Gallí M., van Gool F., Leo O. Sirtuins and inflammation: Friends or foes? Biochem. Pharmacol. 2011;81:569–576.
    1. Salminen A., Hyttinen J.M., Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: Impact on healthspan and lifespan. J. Mol. Med. 2011;89:667–676.
    1. Rector R.S., Warner S.O., Liu Y., Hinton P.S., Sun G.Y., Cox R.H., Stump C.S., Laughlin M.H., Dellsperger K.C., Thomas T.R. Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2007;293:E500–E506.
    1. Montero D., Walther G., Perez-Martin A., Roche E., Vinet A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: Markers and effect of lifestyle intervention. Obes. Rev. 2012;13:441–455.
    1. Strasser B. Physical activity in obesity and metabolic syndrome. Ann. N. Y. Acad. Sci. 2012 doi: 10.1111/j.1749-6632.2012.06785.
    1. Feairheller D.L., Brown M.D., Park J.Y., Brinkley T.E., Basu S., Hagberg J.M., Ferrell R.E., Fenty-Stewart N.M. Exercise training, NADPH oxidase p22phox gene polymorphisms, and hypertension. Med. Sci. Sports Exerc. 2009;41:1421–1428.
    1. Hopps E., Canino B., Caimi G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol. 2011;48:183–189.
    1. De Lemos E.T., Oliveira J., Pinheiro J.P., Reis F. Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: Benefits in type 2 diabetes mellitus. Oxid. Med. Cell. Longev. 2012 doi: 10.1155/2012/741545.
    1. Mellor K., Ritchie R.H., Meredith G., Woodman O.L., Morris M.J., Delbridge L.M. High-fructose diet elevates myocardial superoxide generation in mice in the absence of cardiac hypertrophy. Nutrition. 2010;26:842–848.
    1. Cummings B.P., Stanhope K.L., Graham J.L., Evans J.L., Baskin D.G., Griffen S.C., Havel P.J. Dietary fructose accelerates the development of diabetes in UCD-T2DM rats: Amelioration by the antioxidant, alpha-lipoic acid. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;298:R1343–R1350.
    1. Leamy A.K., Egnatchik R.A., Young J.D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid. Res. 2013;52:165–174.
    1. Buckland G., Travier N., Cottet V., González C.A., Luján-Barroso L., Agudo A., Trichopoulou A., Lagiou P., Trichopoulos D., Peeters P.H., et al. Adherence to the mediterranean diet and risk of breast cancer in the European prospective investigation into cancer and nutrition cohort study. Int. J. Cancer. 2012;26 doi: 10.1002/ijc.27958.
    1. Agnoli C., Grioni S., Sieri S., Palli D., Masala G., Sacerdote C., Vineis P., Tumino R., Giurdanella M.C., Pala V., et al. Italian mediterranean index and risk of colorectal cancer in the Italian section of the EPIC cohort. Int. J. Cancer. 2013;132:1404–1411.
    1. Demarin V., Lisak M., Morović S. Mediterranean diet in healthy lifestyle and prevention of stroke. Acta. Clin. Croat. 2011;50:67–77.
    1. Samieri C., Okereke O.I., Devore E.E., Grodstein F. Long-term adherence to the mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J. Nutr. 2013 doi: 10.3945/jn.112.169896.
    1. Van Dijk S.J., Feskens E.J., Bos M.B., de Groot L.C., de Vries J.H., Müller M., Afman L.A. Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women. J. Nutr. 2012;142:1219–1225.
    1. Ortega-Azorín C., Sorlí J.V., Asensio E.M., Coltell O., Martínez-González M.Á., Salas-Salvadó J., Covas M.I., Arós F., Lapetra J., Serra-Majem L., et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc. Diabetol. 2012;11:137.
    1. Bradlee M.L., Singer M.R., Qureshi M.M., Moore L.L. Food group intake and central obesity among children and adolescents in the Third National Health and Nutrition Examination Survey (NHANES III) Public. Health Nutr. 2010;22:1–9.
    1. Liu S., Manson J.E., Lee I.M., Cole S.R., Hennekens C.H., Willett W.C., Buring J.E. Fruit and vegetable intake and risk of cardiovascular disease: The Women’s Health Study. Am. J. Clin. Nutr. 2000;72:922–928.
    1. Potter A.S., Foroudi S., Stamatikos A., Patil B.S., Deyhim F. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults. Nutr. J. 2011;10:96.
    1. O’Neil C.E., Keast D.R., Nicklas T.A., Fulgoni V.L., 3rd Out-of-hand nut consumption is associated with improved nutrient intake and health risk markers in US children and adults: National Health and Nutrition Examination Survey 1999–2004. Nutr. Res. 2012;32:185–194.
    1. O’Neil C.E., Nicklas T.A., Rampersaud G.C., Fulgoni V.L., III 100% Orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults. Nutr. J. 2012;11:107.
    1. Crujeiraseiras A.B., Parra M.D., Rodríguez M.C., Martínez de Morentin B.E., Martínez J.A. A role for fruit content in energy-restricted diets in improving antioxidant status in obese women during weight loss. Nutrition. 2006;22:593–599.
    1. Balakumar P., Taneja G. Fish oil and vascular endothelial protection: Bench to bedside. Free Radic. Biol. Med. 2012;53:271–279.
    1. Wang Y., Crawford M.A., Chen J., Li J., Ghebremeskel K., Campbell T.C., Fan W., Parker R., Leyton J. Fish consumption, blood docosahexaenoic acid and chronic diseases in Chinese rural populations. Comp. Biochem. Physiol. A. 2003;136:127–140.
    1. Hayakawa S., Yoshikawa D., Ishii H., Tanaka M., Kumagai S., Matsumoto M., Hayashi M., Sugiura T., Hayashi K., Ando H., et al. Association of plasma ω-3 to ω-6 polyunsaturated fatty acid ratio with complexity of coronary artery lesion. Intern. Med. 2012;51:1009–1014.
    1. Nyby M.D., Matsumoto K., Yamamoto K., Abedi K., Eslami P., Hernandez G., Smutko V., Berger M.E., Tuck M.L. Dietary fish oil prevents vascular dysfunction and oxidative stress in hyperinsulinemic rats. Am. J. Hypertens. 2005;18:213–219.
    1. Wang T.M., Chen C.J., Lee T.S., Chao H.Y., Wu W.H., Hsieh S.C., Sheu H.H., Chiang A.N. Docosahexaenoic acid attenuates VCAM-1 expression and NF-κB activation in TNF-α-treated human aortic endothelial cells. J. Nutr. Biochem. 2011;22:187–194.
    1. Sjoberg N.J., Milte C.M., Buckley J.D., Howe P.R., Coates A.M., Saint D.A. Dose-dependent increases in heart rate variability and arterial compliance in overweight and obese adults with DHA-rich fish oil supplementation. Br. J. Nutr. 2010;103:243–248.
    1. McDonald D.M., O’Kane F., McConville M., Devine A.B., McVeigh G.E. Platelet redox balance in diabetic patients with hypertension improved by n-3 fatty acids. Diabetes Care. 2012 doi: 10.2337/dc12-0304.
    1. Rhee Y., Brunt A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: A randomized crossover design. Nutr. J. 2011;10:44.
    1. Kusunoki C., Yang L., Yoshizaki T., Nakagawa F., Ishikado A., Kondo M., Morino K., Sekine O., Ugi S., Nishio Y., et al. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2013;430:225–230.
    1. Dilzer A., Park Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012;52:488–513.
    1. Kim J., Paik H.D., Shin M.J., Park E. Eight weeks of conjugated linoleic acid supplementation has no effect on antioxidant status in healthy overweight/obese Korean individuals. Eur. J. Nutr. 2012;51:135–141.
    1. Kaczmarczyk M.M., Miller M.J., Freund G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism. 2012;61:1058–1066.
    1. Hermsdorff H.H., Puchau B., Volp A.C., Barbosa K.B., Bressan J., Zulet M.Á., Martínez J.A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr. Metab. 2011;22:8–59.
    1. Del Rio D., Agnoli C., Pellegrini N., Krogh V., Brighenti F., Mazzeo T., Masala G., Bendinelli B., Berrino F., Sieri S., et al. Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J. Nutr. 2011;141:118–123.
    1. Ghanim H., Sia C.L., Upadhyay M., Korzeniewski K., Viswanathan P., Abuaysheh S., Mohanty P., Dandona P. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. Am. J. Clin. Nutr. 2010;91:940–949.
    1. Codoñer-Franch P., López-Jaén A.B., de la Mano-Hernández A., Sentandreu E., Simó-Jordá R., Valls-Bellés V. Oxidative markers in children with severe obesity following low-calorie diets supplemented with mandarin juice. Acta Paediatr. 2010;99:1841–1846.
    1. Bahadoran Z., Mirmiran P., Hosseinpanah F., Hedayati M., Hosseinpour-Niazi S., Azizi F. Broccoli sprouts reduce oxidative stress in type 2 diabetes: A randomized double-blind clinical trial. Eur. J. Clin. Nutr. 2011;65:972–977.
    1. Khaw K.T., Bingham S., Welch A., Luben R., Wareham N., Oakes S., Day N. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: A prospective population study. European Prospective Investigation into Cancer and Nutrition. Lancet. 2001;357:657–663.
    1. Sutherland W.H., Manning P.J., Walker R.J., de Jong S.A., Ryalls A.R., Berry E.A. Vitamin E supplementation and plasma 8-isoprostane and adiponectin in overweight subjects. Obesity. 2007;15:386–391.
    1. Wang Q., Sun Y., Ma A., Li Y., Han X., Liang H. Effects of vitamin E on plasma lipid status and oxidative stress in Chinese women with metabolic syndrome. Int. J. Vitam. Nutr. Res. 2010;80:178–187.
    1. Greenlee H., Kwan M.L., Kushi L.H., Song J., Castillo A., Weltzien E., Quesenberry C.P., Jr, Caan B.J. Antioxidant supplement use after breast cancer diagnosis and mortality in the Life After Cancer Epidemiology (LACE) cohort. Cancer. 2012;118:2048–2058.
    1. Klein E.A., Thompson I.M., Jr, Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M., et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) JAMA. 2011;306:1549–1556.
    1. Suksomboon N., Poolsup N., Sinprasert S. Effects of vitamin E supplementation on glycaemic control in type 2 diabetes: Systematic review of randomized controlled trials. J. Clin. Pharm. Ther. 2011;36:53–63.
    1. Lonn E., Bosch J., Yusuf S., Sheridan P., Pogue J., Arnold J.M., Ross C., Arnold A., Sleight P., Probstfield J., et al. HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. JAMA. 2005;293:1338–1347.
    1. Sesso H.D., Buring J.E., Christen W.G., Kurth T., Belanger C., MacFadyen J., Bubes V., Manson J.E., Glynn R.J., Gaziano J.M. Vitamins E and C in the prevention of cardiovascular disease in men: The Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–2133.
    1. Harding A.H., Wareham N.J., Bingham S.A., Khaw K., Luben R., Welch A., Forouhi N.G. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: The European prospective investigation of cancer—Norfolk prospective study. Arch. Intern. Med. 2008;168:1493–1499.
    1. Boekholdt S.M., Meuwese M.C., Day N.E., Luben R., Welch A., Wareham N.J., Khaw K.T. Plasma concentrations of ascorbic acid and C-reactive protein, and risk of future coronary artery disease, in apparently healthy men and women: The EPIC-Norfolk prospective population study. Br. J. Nutr. 2006;96:516–522.
    1. Myint P.K., Luben R.N., Welch A.A., Bingham S.A., Wareham N.J., Khaw K.T. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European Prospective Investigation into Cancer Norfolk prospective population study. Am. J. Clin. Nutr. 2008;87:64–69.
    1. Myint P.K., Luben R.N., Wareham N.J., Khaw K.T. Association between plasma vitamin C concentrations and blood pressure in the European prospective investigation into cancer-Norfolk population-based study. Hypertension. 2011;58:372–379.
    1. Pfister R., Sharp S.J., Luben R., Wareham N.J., Khaw K.T. Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk prospective study. Am. Heart J. 2011;162:246–253.
    1. Lawlor D.A., Davey Smith G., Kundu D., Bruckdorfer K.R., Ebrahim S. Those confounded vitamins: What can we learn from the differences between observational versus randomised trial evidence? Lancet. 2004;363:1724–1727.
    1. Song Y., Xu Q., Park Y., Hollenbeck A., Schatzkin A., Chen H. Multivitamins, individual vitamin and mineral supplements, and risk of diabetes among older U.S. adults. Diabetes Care. 2011;34:108–114.
    1. Juraschek S.P., Guallar E., Appel L.J., Miller E.R., 3rd Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012;95:1079–1088.
    1. Gaziano J.M., Glynn R.J., Christen W.G., Kurth T., Belanger C., MacFadyen J., Bubes V., Manson J.E., Sesso H.D., Buring J.E. Vitamins E and C in the prevention of prostate and total cancer in men: The Physicians’ Health Study II randomized controlled trial. JAMA. 2009;301:52–62.
    1. Suzuki K., Inoue T., Hioki R., Ochiai J., Kusuhara Y., Ichino N., Osakabe K., Hamajima N., Ito Y. Association of abdominal obesity with decreased serum levels of carotenoids in a healthy Japanese population. Clin. Nutr. 2006;25:780–789.
    1. Gaziano J.M., Manson J.E., Branch L.G., Colditz G.A., Willett W.C., Buring J.E. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann. Epidemiol. 1995;5:255–260.
    1. Agarwal M., Parameswari R.P., Vasanthi H.R., Das D.K. Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health. Molecules. 2012;17:4755–4769.
    1. Arunkumar E., Bhuvaneswari S., Anuradha C.V. An intervention study in obese mice with astaxanthin, a marine carotenoid—Effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012;3:120–126.
    1. Hozawa A., Jacobs D.R., Jr, Steffes M.W., Gross M.D., Steffen L.M., Lee D.H. Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: The Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clin. Chem. 2007;53:447–455.
    1. Hozawa A., Jacobs D.R., Jr, Steffes M.W., Gross M.D., Steffen L.M., Lee D.H. Circulating carotenoid concentrations and incident hypertension: The Coronary Artery Risk Development in Young Adults (CARDIA) study. J. Hypertens. 2009;27:237–242.
    1. Czernichow S., Vergnaud A.C., Galan P., Arnaud J., Favier A., Faure H., Huxley R., Hercberg S., Ahluwalia N. Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am. J. Clin. Nutr. 2009;90:329–335.
    1. Choi H.D., Kim J.H., Chang M.J., Kyu-Youn Y., Shin W.G. Effects of astaxanthin on oxidative stress in overweight and obese adults. Phytother. Res. 2011;25:1813–1818.
    1. Iwamoto M., Imai K., Ohta H., Shirouchi B., Sato M. Supplementation of highly concentrated β-cryptoxanthin in a satsuma mandarin beverage improves adipocytokine profiles in obese Japanese women. Lipids Health Dis. 2012;11:52.
    1. Engelhard Y.N., Gazer B., Paran E. Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: A double-blind, placebo-controlled pilot study. Am. Heart. J. 2006;151:100.
    1. Valero M.A., Vidal A., Burgos R., Calvo F.L., Martínez C., Luengo L.M., Cuerda C. Meta-analysis on the role of lycopene in type 2 diabetes mellitus. Nutr. Hosp. 2011;26:1236–1241.
    1. Pérez-Jiménez J., Fezeu L., Touvier M., Arnault N., Manach C., Hercberg S., Galan P., Scalbert A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011;93:1220–1228.
    1. Pedret A., Valls R.M., Fernández-Castillejo S., Catalán Ú., Romeu M., Giralt M., Lamuela-Raventós R.M., Medina-Remón A., Arija V., Aranda N., et al. Polyphenol-rich foods exhibit DNA antioxidative properties and protect the glutathione system in healthy subjects. Mol. Nutr. Food Res. 2012;56:1025–1033.
    1. Sies H., Hollman P.C., Grune T., Stahl W., Biesalski H.K., Williamson G. Protection by flavanol-rich foods against vascular dysfunction and oxidative damage: 27th Hohenheim Consensus Conference. Adv. Nutr. 2012;3:217–221.
    1. Baret P., Septembre-Malaterre A., Rigoulet M., Lefebvre d’Hellencourt C., Priault M., Gonthier M.P., Devin A. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. Int. J. Biochem. Cell Biol. 2013;45:167–174.
    1. De la Garza A.L., Milagro F.I., Boque N., Campión J., Martínez J.A. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med. 2011;77:773–785.
    1. Bolca S., van de Wiele T., Possemiers S. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 2013;24:220–225.
    1. Hollman P.C., Cassidy A., Comte B., Heinonen M., Richelle M., Richling E., Serafini M., Scalbert A., Sies H., Vidry S. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J. Nutr. 2011;141:S989–S1009.
    1. Leiherer A., Mündlein A., Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul. Pharmacol. 2013;58:3–20.
    1. Hokayem M., Blond E., Vidal H., Lambert K., Meugnier E., Feillet-Coudray C., Coudray C., Pesenti S., Luyton C., Lambert-Porcheron S., et al. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. 2012 doi: 10.2337/dc12-1652.
    1. Son M.J., Rico C.W., Nam S.H., Kang M.Y. Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with a high-fat diet. J. Food Sci. 2011;76:H7–H10.
    1. De Groote D., van Belleghem K., Devière J., van Brussel W., Mukaneza A., Amininejad L. Effect of the intake of resveratrol, resveratrol phosphate, and catechin-rich grape seed extract on markers of oxidative stress and gene expression in adult obese subjects. Ann. Nutr. Metab. 2012;61:15–24.
    1. Siriwardhana N., Kalupahana N.S., Cekanova M., Lemieux M., Greer B., Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 2013;24:613–623.
    1. Rayalam S., Yang J.Y., Ambati S., Della-Fera M.A., Baile C.A. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res. 2008;22:1367–1371.
    1. Timmers S., Konings E., Bilet L., Houtkooper R.H., van de Weijer T., Goossens G.H., Hoeks J., van der Krieken S., Ryu D., Kersten S., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell. Metab. 2011;14:612–622.
    1. Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei A., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389.
    1. Bhatt J.K., Thomas S., Nanjan M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012;32:537–541.
    1. Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., Tomás-Barberán F.A., García-Conesa M.T., Espín J.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther. 2013;27:37–48.
    1. Tomé-Carneiro J., Larrosa M., Yáñez-Gascón M.J., Dávalos A., Gil-Zamorano J., Gonzálvez M., García-Almagro F.J., Ruiz-Ros J.A., Tomás-Barberán F.A., Espín J.C., et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res. 2013;72:69–82.
    1. Ghanim H., Sia C.L., Abuaysheh S., Korzeniewski K., Patnaik P., Marumganti A., Chaudhuri A., Dandona P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010;95:E1–E8.
    1. Elamin E., Masclee A., Juuti-Uusitalo K., van Ijzendoorn S., Troost F., Pieters H.J., Dekker J., Jonkers D. Fatty acid ethyl esters induce intestinal epithelial barrier dysfunction via a reactive oxygen species-dependent mechanism in a three-dimensional cell culture model. PLoS One. 2013 doi: 10.1371/journal.pone.0058561.
    1. Brown V.A., Patel K.R., Viskaduraki M., Crowell J.A., Perloff M., Booth T.D., Vasilinin G., Sen A., Schinas A.M., Piccirilli G., et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010;70:9003–9011.
    1. Zhu W., Qin W., Zhang K., Rottinghaus G.E., Chen Y.C., Kliethermes B., Sauter E.R. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr. Cancer. 2012;64:393–400.
    1. Anhê G.F., Okamoto M.M., Kinote A., Sollon C., Lellis-Santos C., Anhê F.F., Lima G.A., Hirabara S.M., Velloso L.A., Bordin S., et al. Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes. Eur. J. Pharmacol. 2012;689:285–293.
    1. Chuang C.C., Martinez K., Xie G., Kennedy A., Bumrungpert A., Overman A., Jia W., McIntosh M.K. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-α-mediated inflammation and insulin resistance in primary human adipocytes. Am. J. Clin. Nutr. 2010;92:1511–1521.
    1. Egert S., Boesch-Saadatmandi C., Wolffram S., Rimbach G., Müller M.J. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J. Nutr. 2010;140:278–284.
    1. Roghani M., Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology. 2010;17:55–59.
    1. Si H., Fu Z., Babu P.V., Zhen W., Leroith T., Meaney M.P., Voelker K.A., Jia Z., Grange R.W., Liu D. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. J. Nutr. 2011;141:1095–1100.
    1. Nagao T., Meguro S., Hase T., Otsuka K., Komikado M., Tokimitsu I., Yamamoto T., Yamamoto K.A. catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity. 2009;17:310–317.
    1. Bogdanski P., Suliburska J., Szulinska M., Stepien M., Pupek-Musialik D., Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr. Res. 2012;32:421–427.
    1. Basu A., Sanchez K., Leyva M.J., Wu M., Betts N.M., Aston C.E., Lyons T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010;29:31–40.
    1. De Amicis F., Russo A., Avena P., Santoro M., Vivacqua A., Bonofiglio D., Mauro L., Aquila S., Tramontano D., Fuqua S.A., et al. In vitromechanism for downregulation of ER-α expression by epigallocatechin gallate in ER+/PR+ human breast cancer cells. Mol. Nutr. Food Res. 2013 doi: 10.1002/mnfr.201200560.
    1. Cimino S., Sortino G., Favilla V., Castelli T., Madonia M., Sansalone S., Russo G.I., Morgia G. Polyphenols: Key issues involved in chemoprevention of prostate cancer. Oxid. Med. Cell. Longev. 2012 doi: 10.1155/2012/632959.
    1. Eden J.A. Phytoestrogens for menopausal symptoms: A review. Maturitas. 2012;72:157–159.
    1. Hurt R.T., Wilson T. Geriatric obesity: Evaluating the evidence for the use of flavonoids to promote weight loss. J. Nutr. Gerontol. Geriatr. 2012;31:269–289.
    1. Behloul N., Wu G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol. 2013;698:31–38.
    1. Goodman-Gruen D., Kritz-Silverstein D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J. Nutr. 2001;131:1202–1206.
    1. Goodman-Gruen D., Kritz-Silverstein D. Usual dietary isoflavone intake and body composition in postmenopausal women. Menopause. 2003;10:427–432.
    1. Erba D., Casiraghi M.C., Martinez-Conesa C., Goi G., Massaccesi L. Isoflavone supplementation reduces DNA oxidative damage and increases O-β-N-acetyl-d-glucosaminidase activity in healthy women. Nutr. Res. 2012;32:233–240.
    1. Clerici C., Nardi E., Battezzati P.M., Asciutti S., Castellani D., Corazzi N., Giuliano V., Gizzi S., Perriello G., di Matteo G., et al. Novel soy germ pasta improves endothelial function, blood pressure, and oxidative stress in patients with type 2 diabetes. Diabetes Care. 2011;34:1946–1948.
    1. Shehzad A., Khan S., Sup Lee Y. Curcumin molecular targets in obesity and obesity-related cancers. Future Oncol. 2012;8:179–190.
    1. Zingg J.M., Hasan S.T., Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors. 2013 doi: 10.1002/biof.1072.
    1. Shao W., Yu Z., Chiang Y., Yang Y., Chai T., Foltz W., Lu H., Fantus I.G., Jin T. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One. 2012;7:e28784.
    1. Bradford P.G. Curcumin and obesity. Biofactors. 2013 doi: 10.1002/biof.1074.
    1. He H.J., Wang G.Y., Gao Y., Ling W.H., Yu Z.W., Jin T.R. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes. 2012;3:94–104.
    1. Bachmeier B.E., Mirisola V., Romeo F., Generoso L., Esposito A., Dell’eva R., Blengio F., Killian P.H., Albini A., Pfeffer U. Reference profile correlation reveals estrogen-like trancriptional activity of Curcumin. Cell Physiol. Biochem. 2010;26:471–482.
    1. Luo X.J., Peng J., Li Y.J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 2011;650:1–7.
    1. Whiting S., Derbyshire E., Tiwari B.K. Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence. Appetite. 2012;59:341–348.
    1. Choi S.E., Kim T.H., Yi S.A., Hwang Y.C., Hwang W.S., Choe S.J., Han S.J., Kim H.J., Kim D.J., Kang Y., Lee K.W. Capsaicin attenuates palmitate-induced expression of macrophage inflammatory protein 1 and interleukin 8 by increasing palmitate oxidation and reducing c-Jun activation in THP-1 (human acute monocytic leukemia cell) cells. Nutr. Res. 2011;31:468–478.
    1. Kang J.H., Tsuyoshi G., Le Ngoc H., Kim H.M., Tu T.H., Noh H.J., Kim C.S., Choe S.Y., Kawada T., Yoo H., et al. Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice. J. Med. Food. 2011;14:310–315.
    1. Mandard S., Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res. 2013 doi: 10.1155/2013/613864.
    1. Tan B., Li X., Yin Y., Wu Z., Liu C., Tekwe C.D., Wu G. Regulatory roles for l-arginine in reducing white adipose tissue. Front. Biosci. 2012;17:2237–2246.
    1. Zemel M.B., Bruckbauer A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients. 2012;4:529–541.
    1. Vrieze A., van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F., Dallinga-Thie G.M., Ackermans M.T., Serlie M.J., Oozeer R., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916.
    1. Diamant M., Blaak E.E., de Vos W.M. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes. Rev. 2011;12:272–281.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023.
    1. Jumpertz R., Le D.S., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.I., Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011;94:58–65.
    1. Park D.Y., Ahn Y.T., Huh C.S., McGregor R.A., Choi M.S. Dual probiotic strains suppress high fructose-induced metabolic syndrome. World J. Gastroenterol. 2013;19:274–283.
    1. Ejtahed H.S., Mohtadi-Nia J., Homayouni-Rad A., Niafar M., Asghari-Jafarabadi M., Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28:539–543.
    1. Martarelli D., Verdenelli M.C., Scuri S., Cocchioni M., Silvi S., Cecchini C., Pompei P. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr. Microbiol. 2011;62:1689–1696.
    1. Kullisaar T., Songisepp E., Mikelsaar M., Zilmer K., Vihalemm T., Zilmer M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 2003;90:449–456.
    1. WHO: Facts and figures. The challenge of obesity—Quick statistics. [(accessed on 12 February 2013)]. Available online: .
    1. Maric-Bilkan C. Obesity and diabetic kidney disease. Med. Clin. North Am. 2013;97:59–74.
    1. Ballard-Barbash R., Berrigan D., Potischman N., Dowling E. Obesity and Cancer Epidemiology. In: Berger N.A., editor. Cancer and Energy Balance, Epidemiology and Overview. Springer-Verlag New York, LLC; New York, NY, USA: 2010.
    1. Curti M.L., Jacob P., Borges M.C., Rogero M.M., Ferreira S.R. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: Implications for a nutrigenetic approach. J. Obes. 2011 doi: 10.1155/2011/497401.
    1. Estadella D., da Penha Oller do Nascimento C.M., Oyama L.M., Ribeiro E.B., Dâmaso A.R., de Piano A. Lipotoxicity: Effects of dietary saturated and transfatty acids. Mediators Inflamm. 2013 doi: 10.1155/2013/137579.

Source: PubMed

3
Se inscrever