Safety and efficacy of low-dose intravenous arsenic trioxide in systemic lupus erythematosus: an open-label phase IIa trial (Lupsenic)

Mohamed Hamidou, Antoine Néel, Joel Poupon, Zahir Amoura, Mikael Ebbo, Jean Sibilia, Jean-Francois Viallard, Benjamin Gaborit, Christelle Volteau, Jean Benoit Hardouin, Eric Hachulla, François Rieger, Mohamed Hamidou, Antoine Néel, Joel Poupon, Zahir Amoura, Mikael Ebbo, Jean Sibilia, Jean-Francois Viallard, Benjamin Gaborit, Christelle Volteau, Jean Benoit Hardouin, Eric Hachulla, François Rieger

Abstract

Background: Lupus animal model has shown that arsenic trioxide (ATO), a treatment of acute promyelocytic leukaemia, could be effective in SLE. This is the first clinical study to determine the safety and efficacy of a short course of intravenous ATO in patients with active SLE.

Methods: This phase IIa, open-label, dose-escalating study enrolled 11 adult SLE patients with a non-organ threatening disease, clinically active despite conventional therapy. Patients received 10 IV infusions of ATO within 24 days. The first group received 0.10 mg/kg per injection, with dose-escalating to 0.15 mg/kg in a second group, and to 0.20 mg/kg in a third group. The primary endpoint was the occurrence of adverse events (AEs) and secondary endpoints were the number of SLE Responder Index 4 (SRI-4) responders at week 24 and reduction of corticosteroid dosage. In an exploratory analysis, we collected long-term data for safety and attainment of lupus low disease activity state (LLDAS).

Results: Four serious AEs occurred (grade 3 neutropenia, osteitis, neuropathy), 2 of which were attributable to ATO (neutropenia in the 2 patients treated with mycophenolate). Two patients suffered a severe flare during the last 4 weeks of the trial. At W24, five patients among 10 were SRI-4 responders. Overall, mean corticosteroid dosage decreased from 11.25 mg/day at baseline to 6 mg/day at W24 (P < 0.01). In the long term, 6 patients attained LLDAS at W52, which continued at last follow-up (median LLDAS duration 3 years, range 2-4).

Conclusions: A short course of ATO has an acceptable safety profile in SLE patients and encouraging efficacy.

Trial registration: ClinicalTrials.gov, NCT01738360 registered 30 November 2012.

Keywords: Arsenic trioxide; Autoimmune diseases; Phase II clinical trial; Systemic lupus erythematosus; Treatment.

Conflict of interest statement

François Rieger is currently an employee of MEDSENIC.

Figures

Fig. 1
Fig. 1
Clinical efficacy outcomes of ATO. Efficacy results after ATO infusion. Treatment was given over 21 days and changes in a SLEDAI score, b corticosteroid dose and c PGA score were recorded every 4 weeks over 24 weeks thereafter. Histograms depict the median. *P < 0.05, **P < 0.01, ***P < 0.001 (mixed model for repeated measurements). d Median Health-Related Quality of Life (HRQoL) scores for the 8 dimensions of the SF36 for the patients at D0, D90 and D180 and the score of a gender- and age-matched sample of individuals drawn from the general French population. We noted a marked increase between D0 and D90/D180 for all the dimensions of the HRQoL and globally stable scores between D90 and D180, which remained inferior to those of the general population. ATO, arsenic trioxide; Eq., equivalent; PGA, Physician Global Assessment; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index
Fig. 2
Fig. 2
Immunological effects of ATO. Changes in a anti-ds-DNA, b immunoglobulin G, c complement factor 3 and d complement factor 4 levels over 24 weeks after ATO infusion. Each dot represents an individual measurement. Changes in anti-dsDNA level are represented as variation from baseline in 6 patients with detectable anti-dsDNA at baseline. Dotted lines represent the lower limit of normal complement level
Fig. 3
Fig. 3
ATO pharmacokinetics. Plasma arsenic concentrations (mean +/− SD) in the three groups of ATO dosage before (a) or at the end of the perfusion (b). White circle indicates 0.10 mg/kg, white square indicates 0.15 mg/kg, and black triangle indicates 0.20 mg/kg

References

    1. Lo MS, Tsokos GC. Recent developments in systemic lupus erythematosus pathogenesis and applications for therapy. Curr Opin Rheumatol. 2018;30:222–228. doi: 10.1097/BOR.0000000000000474.
    1. Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–731. doi: 10.1016/S0140-6736(10)61354-2.
    1. Touma Z, Gladman DD. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci Med. 2017;4:e000239. doi: 10.1136/lupus-2017-000239.
    1. Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010;62:222–233. doi: 10.1002/art.27233.
    1. Rovin BH, Furie R, Latinis K, Looney RJ, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64:1215–1226. doi: 10.1002/art.34359.
    1. Alexander T, Sarfert R, Klotsche J, et al. The proteasome inhibitor bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis. 2015;74:1474–1478. doi: 10.1136/annrheumdis-2014-206016.
    1. Mathews V, George B, Lakshmi KM, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood. 2006;107:2627–2632. doi: 10.1182/blood-2005-08-3532.
    1. Emadi A, Gore SD. Arsenic trioxide - an old drug rediscovered. Blood Rev. 2010;24:191–199. doi: 10.1016/j.blre.2010.04.001.
    1. Roboz GJ. Arsenic and old lace: novel approaches in elderly patients with acute myeloid leukemia. Semin Hematol. 2008;45(Suppl 2):S22–S24. doi: 10.1053/j.seminhematol.2008.07.005.
    1. Zhou J, Zhang Y, Li J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010;115:1697–1702. doi: 10.1182/blood-2009-07-230805.
    1. Mathews V, George B, Chendamarai E, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol. 2010;28:3866–3871. doi: 10.1200/JCO.2010.28.5031.
    1. Bobé P, Bonardelle D, Benihoud K, et al. Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood. 2006;108:3967–3975. doi: 10.1182/blood-2006-04-020610.
    1. Zhao Y, Wen G, Qiao Z, et al. Effects of tetra-arsenic tetra-sulfide on BXSB lupus-prone mice: a pilot study. Lupus. 2013;22:469–476. doi: 10.1177/0961203313478302.
    1. Kavian N, Marut W, Servettaz A, et al. Reactive oxygen species-mediated killing of activated fibroblasts by arsenic trioxide ameliorates fibrosis in a murine model of systemic sclerosis. Arthritis Rheum. 2012;64:3430–3440. doi: 10.1002/art.34534.
    1. Kavian N, Marut W, Servettaz A, et al. Arsenic trioxide prevents murine sclerodermatous graft-versus-host disease. J Immunol. 2012;188:5142–5149. doi: 10.4049/jimmunol.1103538.
    1. Hu H, Chen E, Li Y, et al. Effects of arsenic trioxide on INF-gamma gene expression in MRL/lpr mice and human lupus. Biol Trace Elem Res. 2018;184:391–397. doi: 10.1007/s12011-017-1206-9.
    1. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. doi: 10.1002/art.1780400928.
    1. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–1277. doi: 10.1002/art.1780251101.
    1. Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288–291.
    1. Raffoux E, Rousselot P, Poupon J, et al. Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol. 2003;21:2326–2334. doi: 10.1200/JCO.2003.01.149.
    1. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics. 1990;46:33–48. doi: 10.2307/2531628.
    1. O’Quigley J, Shen LZ. Continual reassessment method: a likelihood approach. Biometrics. 1996;52:673–684. doi: 10.2307/2532905.
    1. Isenberg DA, Rahman A, Allen E, et al. BILAG 2004. Development and initial validation of an updated version of the British Isles Lupus Assessment Group’s disease activity index for patients with systemic lupus erythematosus. Rheumatology. 2005;44:902–906. doi: 10.1093/rheumatology/keh624.
    1. Petri M, Kim MY, Kalunian KC, et al. Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med. 2005;353:2550–2558. doi: 10.1056/NEJMoa051135.
    1. Buyon JP, Petri MA, Kim MY, et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med. 2005;142:953–962. doi: 10.7326/0003-4819-142-12_Part_1-200506210-00004.
    1. Furie RA, Petri MA, Wallace DJ, et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 2009;61:1143–1151. doi: 10.1002/art.24698.
    1. Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–121. doi: 10.1056/NEJMoa1300874.
    1. Franklyn K, Lau CS, Navarra SV, et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS) Ann Rheum Dis. 2016;75:1615–1621. doi: 10.1136/annrheumdis-2015-207726.
    1. Morand EF, Trasieva T, Berglind A, et al. Lupus Low Disease Activity State (LLDAS) attainment discriminates responders in a systemic lupus erythematosus trial: post-hoc analysis of the Phase IIb MUSE trial of anifrolumab. Ann Rheum Dis. 2018;77:706–713. doi: 10.1136/annrheumdis-2017-212504.
    1. Ordi-Ros J, Sáez-Comet L, Pérez-Conesa M, et al. Enteric-coated mycophenolate sodium versus azathioprine in patients with active systemic lupus erythematosus: a randomised clinical trial. Ann Rheum Dis. 2017;76:1575–1582. doi: 10.1136/annrheumdis-2016-210882.
    1. Zen M, Iaccarino L, Gatto M, et al. The effect of different durations of remission on damage accrual: results from a prospective monocentric cohort of Caucasian patients. Ann Rheum Dis. 2017;76:562–565. doi: 10.1136/annrheumdis-2016-210154.
    1. Bernatsky S, Ramsey-Goldman R, et al. Smoking is the most significant modifiable lung cancer risk factor in systemic lupus erythematosus. J Rheumatol. 2018;45:393–396. doi: 10.3899/jrheum.170652.
    1. Zhu H, Hu J, Chen L, et al. The 12-year follow-up of survival, chronic adverse effects, and retention of arsenic in patients with acute promyelocytic leukemia. Blood. 2016;128:1525–1528. doi: 10.1182/blood-2016-02-699439.
    1. Xu W, Li X, Quan L, et al. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia. Leuk Lymphoma. 2018;59:650–659. doi: 10.1080/10428194.2017.1346253.
    1. Zhao B, Xia J-J, Wang L-M, et al. Immunosuppressive effect of arsenic trioxide on islet xenotransplantation prolongs xenograft survival in mice. Cell Death Dis. 2018;9:408. doi: 10.1038/s41419-018-0446-8.
    1. Xu S, Chen J, Wang F, et al. Arsenic trioxide combined with co-stimulatory molecule blockade prolongs survival of cardiac allografts in alloantigen-primed mice. Transpl Immunol. 2010;24:57–63. doi: 10.1016/j.trim.2010.07.003.
    1. Macoch M, Morzadec C, Fardel O, et al. Inorganic arsenic impairs differentiation and functions of human dendritic cells. Toxicol Appl Pharmacol. 2013;266:204–213. doi: 10.1016/j.taap.2012.11.008.
    1. Ye Y, Ricard L, Siblany L, Stocker N, De Vassoigne F, Brissot E, Lamarthée B, Mekinian A, Mohty M, Gaugler B, Malard F. Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition. Acta Pharm Sin B. 2020;10:1061–1072. doi: 10.1016/j.apsb.2020.01.016.
    1. Wang G, Pierangeli SS, Papalardo E, et al. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum. 2010;62:2064–2072.
    1. Li C, Zhang J, Wang W, Wang H, Zhang Y, Zhang Z. Arsenic trioxide improves Treg and Th17 balance by modulating STAT3 in treatment-naive rheumatoid arthritis patients. Int Immunopharmacol. 2019;73:539–551. doi: 10.1016/j.intimp.2019.05.001.
    1. Robert M, Miossec P. Interleukin-17 and lupus: enough to be a target ? For which patients ? Lupus. 2020;29:6–14. doi: 10.1177/0961203319891243.
    1. Torka P, Al Ustwani O, Wetzler M, et al. Swallowing a bitter pill-oral arsenic trioxide for acute promyelocytic leukemia. Blood Rev. 2016;30:201–211. doi: 10.1016/j.blre.2015.11.004.
    1. Au W-Y, Kumana CR, Lee HKK, et al. Oral arsenic trioxide-based maintenance regimens for first complete remission of acute promyelocytic leukemia: a 10-year follow-up study. Blood. 2011;118:6535–6543. doi: 10.1182/blood-2011-05-354530.

Source: PubMed

3
Se inscrever