Stunting is characterized by chronic inflammation in Zimbabwean infants

Andrew J Prendergast, Sandra Rukobo, Bernard Chasekwa, Kuda Mutasa, Robert Ntozini, Mduduzi N N Mbuya, Andrew Jones, Lawrence H Moulton, Rebecca J Stoltzfus, Jean H Humphrey, Andrew J Prendergast, Sandra Rukobo, Bernard Chasekwa, Kuda Mutasa, Robert Ntozini, Mduduzi N N Mbuya, Andrew Jones, Lawrence H Moulton, Rebecca J Stoltzfus, Jean H Humphrey

Abstract

Background: Stunting affects one-third of children in developing countries, but the causes remain unclear. We hypothesized that enteropathy leads to low-grade inflammation, which suppresses the growth hormone-IGF axis and mediates stunting.

Methods: We conducted a case-control study of 202 HIV-unexposed Zimbabwean infants who were stunted (height-for-age Z-score (HAZ) <-2; cases) or non-stunted (HAZ >-0.5; controls) at 18 months. We measured biomarkers of intestinal damage (I-FABP), inflammation (CRP, AGP, IL-6) and growth hormone-IGF axis (IGF-1, IGFBP3) in infant plasma at 6 weeks and 3, 6, 12 and 18 months, and in paired maternal-infant plasma at birth. Adjusted mean differences between biomarkers were estimated using regression models. Multivariate odds ratios of stunting were estimated by logistic regression.

Results: At birth, cases were shorter (median (IQR) HAZ -1.00 (-1.53, -0.08) vs 0.03 (-0.57, 0.62,); P<0.001) than controls and their mothers had lower levels of IGF-1 (adjusted mean difference (95%CI) -21.4 (-39.8, -3.1) ng/mL). From 6 weeks to 12 months of age, levels of CRP and AGP were consistently higher and IGF-1 and IGFBP3 lower in cases versus controls; IGF-1 correlated inversely with inflammatory markers at all time-points. I-FABP increased between 3-12 months, indicating extensive intestinal damage during infancy, which was similar in cases and controls. In multivariate analysis, higher log10 levels of CRP (aOR 3.06 (95%CI 1.34, 6.99); P = 0.008) and AGP (aOR 7.87 (95%CI 0.74, 83.74); P = 0.087) during infancy were associated with stunting. There were no associations between levels of I-FABP, IL-6, sCD14 or EndoCAb and stunting.

Conclusions: Stunting began in utero and was associated with low maternal IGF-1 levels at birth. Inflammatory markers were higher in cases than controls from 6 weeks of age and were associated with lower levels of IGF-1 throughout infancy. Higher levels of CRP and AGP during infancy were associated with stunting. These findings suggest that an extensive enteropathy occurs during infancy and that low-grade chronic inflammation may impair infant growth.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Selection of cases and controls.
Figure 1. Selection of cases and controls.
14110 women were recruited within 96–2000. Eligible infants for this current study were born to women who were HIV-negative at baseline and remained uninfected through 18 months, who had anthropometry data available at 18 mo and stored plasma samples of ≥0.2 mL volume from at least 4 study time-points between 6 weeks and 18 months of age. Stunted infants were selected based on height-for-age Z-score −0.5 at 18 mo.
Figure 2. Growth in cases and controls.
Figure 2. Growth in cases and controls.
A: Median height-for-age Z-score (HAZ) in non-stunted (dashed line) and stunted (solid line) infants between birth and 18 months of age, with interquartile range. B: Median growth velocity in non-stunted (dashed line) and stunted (solid line) infants between birth and 18 months of age, with interquartile range. Growth velocity was calculated as height change per day, by comparing height (in centimeters) at consecutive visits and dividing by the number of days between visits.
Figure 3. Changes in biomarkers over the…
Figure 3. Changes in biomarkers over the first 18 months of life.
Levels of A: Insulin-like growth factor 1 (IGF-1), B: IGF-binding protein 3 (IGFBP3), C: Intestinal fatty acid binding protein (I-FABP), D: Soluble CD14 (sCD14), E: IgG endotoxin core antibodies (EndoCAb), F: Interleukin-6 (IL-6), G: C-reactive protein (CRP) and H: Alpha-1 acid glycoprotein (AGP), in non-stunted (blue line) and stunted (red line) infants between birth and 18 months of age. Data shown are means with standard errors, except for IL-6, which shows medians with interquartile range (solid error bars for non-stunted infants and dashed bars for stunted infants). Mean levels, standard deviations, unadjusted and adjusted differences between cases and controls are shown in Table S1.
Figure 4. Relationships between pro-inflammatory markers and…
Figure 4. Relationships between pro-inflammatory markers and IGF-1.
Associations between levels of IGF-1 and (Panel A) AGP, (Panel B) CRP, (Panel C) soluble CD14 and (Panel D) IL-6, at 3 months of age. Data for cases and controls are combined. Spearman correlations are shown.
Figure 5. Influence of IGF-1 on birth…
Figure 5. Influence of IGF-1 on birth weight and relationship between maternal and infant inflammation at birth.
A: Relationship between infant levels of IGF-1, measured within 96 hours of birth, and birth weight. Spearman correlation is shown. B: Relationship between maternal and infant AGP levels measured in paired plasma samples collected within 96 hours of delivery. Spearman correlation is shown.

References

    1. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, et al. (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382: 427–451.
    1. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, et al. (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371: 340–357.
    1. Victora CG, de Onis M, Hallal PC, Blossner M, Shrimpton R (2010) Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics 125: e473–480.
    1. Dewey KG, Adu-Afarwuah S (2008) Systematic review of the efficacy and effectiveness of complementary feeding interventions in developing countries. Maternal and Child Nutrition: Blackwell Publishing Ltd: Program in International and Community Nutrition, University of California, Davis, CA, USA.
    1. Briend A (1990) Is diarrhoea a major cause of malnutrition among the under-fives in developing countries? A review of available evidence. Eur J Clin Nutr 44: 611–628.
    1. Briend A, Hasan KZ, Aziz KM, Hoque BA (1989) Are diarrhoea control programmes likely to reduce childhood malnutrition? Observations from rural Bangladesh. Lancet 2: 319–322.
    1. Moy RJ, de CMTF, Choto RG, McNeish AS, Booth IW (1994) Diarrhoea and growth faltering in rural Zimbabwe. European Journal of Clinical Nutrition 48: 810–821.
    1. Poskitt EM, Cole TJ, Whitehead RG (1999) Less diarrhoea but no change in growth: 15 years' data from three Gambian villages. Archives of Disease in Childhood 80: 115–119 discussion 119–120.
    1. Solomons NW, Mazeriegos M, Brown KH, Klasing K (1993) The underprivileged, developing country child: environmental contamination and growth failure revisited. Nutrition Reviews 51: 327–332.
    1. Humphrey JH (2009) Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet 374: 1032–1035.
    1. Desai HG, Borkar AV, Pathare SM, Dighe PK, Jeejeebhoy KN (1969) ‘Flat’ jejunal mucosa in the tropics. Indian Journal of Medical Sciences 23: 1–5.
    1. Schenk EA, Samloff IM, Klipstein FA (1968) Morphology of small bowel biopsies. The American Journal of Clinical Nutrition 21: 944–961.
    1. Menzies IS, Zuckerman MJ, Nukajam WS, Somasundaram SG, Murphy B, et al. (1999) Geography of intestinal permeability and absorption. Gut 44: 483–489.
    1. Prendergast A, Kelly P (2012) Review: Enteropathies in the developing world: neglected effects on global health. Am J Trop Med Hyg 86: 756–763.
    1. Lunn PG, Northrop-Clewes CA, Downes RM (1991) Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet 338: 907–910.
    1. De Benedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, et al. (1997) Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-1. J Clin Invest 99: 643–650.
    1. Walters TD, Griffiths AM (2009) Mechanisms of growth impairment in pediatric Crohn's disease. Nat Rev Gastroenterol Hepatol 6: 513–523.
    1. Humphrey JH, Iliff PJ, Marinda ET, Mutasa K, Moulton LH, et al. (2006) Effects of a single large dose of vitamin A, given during the postpartum period to HIV-positive women and their infants, on child HIV infection, HIV-free survival, and mortality. The Journal of Infectious Diseases 193: 860–871.
    1. Iliff PJ, Piwoz EG, Tavengwa NV, Zunguza CD, Marinda ET, et al. (2005) Early exclusive breastfeeding reduces the risk of postnatal HIV-1 transmission and increases HIV-free survival. AIDS 19: 699–708.
    1. Gibson RS (1990) Principles of nutritional assessment: New York Oxford.
    1. Newson R (2002) Parameters behind “nonparametric” statistics: Kendall's tau, Somers' D and median differences. The Stata Journal 2: 45–64.
    1. Lieberman JM, Sacchettini J, Marks C, Marks WH (1997) Human intestinal fatty acid binding protein: Report of an assay with studies in normal colunteers and intestinal ischemia. Surgery 121: 335–342.
    1. Gauldie J, Richards C, Harnish D, Lansdorp P, Baumann H (1987) Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proceedings of the National Academy of Sciences of the United States of America 84: 7251–7255.
    1. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine 340: 448–454.
    1. Jensen RB, Jeppesen KA, VielwertMichaelsen KF, Main KM, Skakkebaek NE, et al. (2005) Insulin-like growth factor I (IGF-I) and IGF-binding protein 3 as diagnostic markers of growth hormone deficiency in infancy. Horm Res 63: 15–21.
    1. Yuksel B, Ozbek MN, Mungan NO, Darendeliler F, Budan B, et al. (2011) Serum IGF-1 and IGFBP-3 levels in healthy children between 0 and 6 years of age. J Clin Res Ped Endo 3: 84–88.
    1. Baalwa J, Byarugaba BB, Kabagambe KE, Otim AM (2010) Prevalence of overweight and obesity in young adults in Uganda. African Health Sciences 10: 367–373.
    1. Shayo GA, Mugusi FM (2011) Prevalence of obesity and associated risk factors among adults in Kinondoni municipal district, Dar es Salaam Tanzania. BMC Public Health 11: 365.
    1. Campbell DI, Elia M, Lunn PG (2003) Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr 133: 1332–1338.
    1. Derikx JPM, Vreugdenhil ACE, Van den Neucker AM, Grootjans J, van Bijnen AA, et al. (2009) A pilot study on the noninvasive evaluation of intestinal damage in celiac disease using I-FABP and L-FABP. J Clin Gastroenterol 43: 727–733.
    1. Derikx JP, Bijker EM, Vos GD, van Bijnen AA, Heineman E, et al. (2010) Gut mucosal cell damage in meningococcal sepsis in children: relation with clinical outcome. Critical Care Medicine 38: 133–137.
    1. Sandler NG, Wand H, Roque A, Law M, Nason MC, et al. (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. The Journal of Infectious Diseases 203: 780–790.
    1. Vreugdenhil AC, Wolters VM, Adriaanse MP, Van den Neucker AM, van Bijnen AA, et al. (2011) Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scandinavian Journal of Gastroenterology 46: 1435–1441.
    1. Kosek M, Haque R, Lima A, Babji S, Shrestha S, et al. (2013) Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. The American Journal of Tropical Medicine and Hygiene 88: 390–396.
    1. Peterson KM, Buss J, Easley R, Yang Z, Korpe PS, et al. (2013) REG1B as a predictor of childhood stunting in Bangladesh and Peru. The American Journal of Clinical Nutrition 97: 1129–1133.
    1. Lin A, Arnold BF, Afreen S, Goto R, Huda TM, et al. (2013) Household environmental conditions are associated with enteropathy and impaired growth in rural Bangladesh. The American Journal of Tropical Medicine and Hygiene 89: 130–137.
    1. Liu JR, Sheng XY, Hu YQ, Yu XG, Westcott JE, et al. (2012) Fecal calprotectin levels are higher in rural than in urban Chinese infants and negatively associated with growth. BMC Pediatrics 12: 129.
    1. Kitchens RL, Thompson PA (2005) Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J Endotoxin Res 11: 225–229.
    1. Semple S, Devakumar D, Fullerton DG, Thorne PS, Metwali N, et al. (2010) Airborne endotoxin concentrations in homes burning biomass fuel. Environmental Health Perspectives 118: 988–991.
    1. Keusch GT, Rosenberg IH, Denno DM, Duggan C, Guerrant RL, et al. (2013) Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food and Nutrition Bulletin 34: 357–364.

Source: PubMed

3
Se inscrever