The EANM practice guidelines for bone scintigraphy

T Van den Wyngaert, K Strobel, W U Kampen, T Kuwert, W van der Bruggen, H K Mohan, G Gnanasegaran, R Delgado-Bolton, W A Weber, M Beheshti, W Langsteger, F Giammarile, F M Mottaghy, F Paycha, EANM Bone & Joint Committee and the Oncology Committee, T Van den Wyngaert, K Strobel, W U Kampen, T Kuwert, W van der Bruggen, H K Mohan, G Gnanasegaran, R Delgado-Bolton, W A Weber, M Beheshti, W Langsteger, F Giammarile, F M Mottaghy, F Paycha, EANM Bone & Joint Committee and the Oncology Committee

Abstract

Purpose: The radionuclide bone scan is the cornerstone of skeletal nuclear medicine imaging. Bone scintigraphy is a highly sensitive diagnostic nuclear medicine imaging technique that uses a radiotracer to evaluate the distribution of active bone formation in the skeleton related to malignant and benign disease, as well as physiological processes.

Methods: The European Association of Nuclear Medicine (EANM) has written and approved these guidelines to promote the use of nuclear medicine procedures of high quality.

Conclusion: The present guidelines offer assistance to nuclear medicine practitioners in optimizing the diagnostic procedure and interpreting bone scintigraphy. These guidelines describe the protocols that are currently accepted and used routinely, but do not include all existing procedures. They should therefore not be taken as exclusive of other nuclear medicine modalities that can be used to obtain comparable results. It is important to remember that the resources and facilities available for patient care may vary.

Keywords: Bone SPECT/CT; Bone disease; Bone scan; Bone scintigraphy.

Figures

Fig. 1
Fig. 1
Normal whole-body scan. Scintigraphic criteria allowing assessment of the quality and interpretability of a whole-body scan

References

    1. Kosuda S, Kaji T, Yokoyama H, Yokokawa T, Katayama M, Iriye T, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med. 1996;37:975–978.
    1. Horger M, Eschmann SM, Pfannenberg C, Vonthein R, Besenfelder H, Claussen CD, et al. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol. 2004;183:655–661. doi: 10.2214/ajr.183.3.1830655.
    1. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. Bone scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:BP99–BP106.
    1. Donohoe K, Brown M, Collier B, Carretta R, Henkin R, O’Mara R, et al. SNMMI procedure standard for bone scintigraphy 3.0. Reston, VA: Society of Nuclear Medicine and Molecular Imaging; 2003. p. 205–9. . Accessed 11 May 2016.
    1. Commissie Kwaliteitsbevordering Nederlandse Vereniging Nucleaire Geneeskunde. Skeletscintigrafie. In: Barneveld P, van Urk P, editors. Aanbevelingen Nucleaire Geneeskunde. Neer: Kloosterhof acquisitie services – uitgeverij; 2007. p. 155–60.
    1. Société Française de Médecine Nucléaire et Imagerie Moléculaire (SFMN). Guidelines for writing protocols for bone scintigraphy. Med Nucl. 2012;687–97.
    1. Beheshti M, Mottaghy FM, Paycha F, Behrendt FF, Van den Wyngaert T, Fogelman I, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–1777. doi: 10.1007/s00259-015-3138-y.
    1. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–1820. doi: 10.2967/jnumed.110.082263.
    1. Stauss J, Hahn K, Mann M, De Palma D. Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride. Eur J Nucl Med Mol Imaging. 2010;37:1621–1628. doi: 10.1007/s00259-010-1492-3.
    1. Fogelman I, Gnanasegaran G, Van der Wall H. Radionuclide and hybrid bone imaging. Berlin: Springer; 2013.
    1. Yang DC, Ratani RS, Mittal PK, Chua RS, Pate SM. Radionuclide three-phase whole-body bone imaging. Clin Nucl Med. 2002;27:419–426. doi: 10.1097/00003072-200206000-00007.
    1. Bares R. Skeletal scintigraphy in breast cancer management. Q J Nucl Med. 1998;42:43–48.
    1. Cook GJ, Fogelman I. Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med. 1999;29:69–79. doi: 10.1016/S0001-2998(99)80031-2.
    1. Cook GJ, Fogelman I. The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med. 2001;31:206–211. doi: 10.1053/snuc.2001.23527.
    1. Dose J, Bleckmann C, Bachmann S, Bohuslavizki KH, Berger J, Jenicke L, et al. Comparison of fluorodeoxyglucose positron emission tomography and “conventional diagnostic procedures” for the detection of distant metastases in breast cancer patients. Nucl Med Commun. 2002;23:857–864. doi: 10.1097/00006231-200209000-00009.
    1. Gallowitsch HJ, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, et al. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol. 2003;38:250–256.
    1. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46:1356–1367.
    1. Orzel JA, Sawaf NW, Richardson ML. Lymphoma of the skeleton: scintigraphic evaluation. AJR Am J Roentgenol. 1988;150:1095–1099. doi: 10.2214/ajr.150.5.1095.
    1. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27:1305–1311. doi: 10.1007/s002590000301.
    1. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–3379.
    1. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun. 2001;22:875–879. doi: 10.1097/00006231-200108000-00005.
    1. Hetzel M, Arslandemir C, Konig HH, Buck AK, Nussle K, Glatting G. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:2206–2214. doi: 10.1359/jbmr.2003.18.12.2206.
    1. Nakamoto Y, Osman M, Wahl RL. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG. Clin Nucl Med. 2003;28:302–307.
    1. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol. 2005;184:1266–1273. doi: 10.2214/ajr.184.4.01841266.
    1. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26:1148–1159. doi: 10.1200/JCO.2007.12.4487.
    1. Dennis ER, Jia X, Mezheritskiy IS, Stephenson RD, Schoder H, Fox JJ, et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol. 2012;30:519–524. doi: 10.1200/JCO.2011.36.5791.
    1. Duer A, Ostergaard M, Horslev-Petersen K, Vallo J. Magnetic resonance imaging and bone scintigraphy in the differential diagnosis of unclassified arthritis. Ann Rheum Dis. 2008;67:48–51. doi: 10.1136/ard.2006.063792.
    1. Ryan PJ, Gibson T, Fogelman I. Spinal bone SPECT in chronic symptomatic ankylosing spondylitis. Clin Nucl Med. 1997;22:821–824. doi: 10.1097/00003072-199712000-00003.
    1. Guglielmi G, Cascavilla A, Scalzo G, Salaffi F, Grassi W. Imaging of sternocostoclavicular joint in spondyloarthropathies and other rheumatic conditions. Clin Exp Rheumatol. 2009;27:402–408.
    1. Makki D, Khazim R, Zaidan AA, Ravi K, Toma T. Single photon emission computerized tomography (SPECT) scan-positive facet joints and other spinal structures in a hospital-wide population with spinal pain. Spine J. 2010;10:58–62. doi: 10.1016/j.spinee.2009.06.004.
    1. Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993;52:557–563. doi: 10.1136/ard.52.8.557.
    1. Van den Wyngaert T, Huizing MT, Fossion E, Vermorken JB. Prognostic value of bone scintigraphy in cancer patients with osteonecrosis of the jaw. Clin Nucl Med. 2011;36:17–20. doi: 10.1097/RLU.0b013e3181feeb72.
    1. Brown ML, Collier BD, Jr, Fogelman I. Bone scintigraphy: Part 1. Oncology and infection. J Nucl Med. 1993;34:2236–2240.
    1. Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–658. doi: 10.2967/jnumed.112.112524.
    1. Jutte P, Lazzeri E, Sconfienza LM, Cassar-Pullicino V, Trampuz A, Petrosillo N, et al. Diagnostic flowcharts in osteomyelitis, spondylodiscitis and prosthetic joint infection. Q J Nucl Med Mol Imaging. 2014;58:2–19.
    1. Collier BD, Jr, Fogelman I, Brown ML. Bone scintigraphy: Part 2. Orthopedic bone scanning. J Nucl Med. 1993;34:2241–2246.
    1. Holder LE. Bone scintigraphy in skeletal trauma. Radiol Clin North Am. 1993;31:739–781.
    1. Di Leo C, Tarolo GL, Aliberti G, Ardemagni A, Conte A, Bestetti A, et al. Stress fracture and coexistent periosteal reaction (“shin splints”) in a young athlete revealed by bone scintigraphy. Nuklearmedizin. 2000;39:N50–N51.
    1. Huellner MW, Burkert A, Strobel K, Perez Lago Mdel S, Werner L, Hug U, et al. Imaging non-specific wrist pain: interobserver agreement and diagnostic accuracy of SPECT/CT, MRI, CT, bone scan and plain radiographs. PLoS One. 2013;8:e85359. doi: 10.1371/journal.pone.0085359.
    1. Fogelman I, Collier BD, Brown ML. Bone scintigraphy: Part 3. Bone scanning in metabolic bone disease. J Nucl Med. 1993;34:2247–2252.
    1. Mari C, Catafau A, Carrio I. Bone scintigraphy and metabolic disorders. Q J Nucl Med. 1999;43:259–267.
    1. Hain SF, Fogelman I. Nuclear medicine studies in metabolic bone disease. Semin Musculoskelet Radiol. 2002;6:323–329. doi: 10.1055/s-2002-36731.
    1. Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res. 2013;3:45. doi: 10.1186/2191-219X-3-45.
    1. de Graaf P, Schicht IM, Pauwels EK, te Velde J, de Graeff J. Bone scintigraphy in renal osteodystrophy. J Nucl Med. 1978;19:1289–1296.
    1. de Jonge FA, Pauwels EK, Hamdy NA. Scintigraphy in the clinical evaluation of disorders of mineral and skeletal metabolism in renal failure. Eur J Nucl Med. 1991;18:839–855. doi: 10.1007/BF00175066.
    1. ICRP Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008;38:1–197. doi: 10.1016/j.icrp.2009.04.001.
    1. Doran MG, Spratt DE, Wongvipat J, Ulmert D, Carver BS, Sawyers CL, et al. Cabozantinib resolves bone scans in tumor-naive mice harboring skeletal injuries. Mol Imaging. 2014;13:7290.2014.00026. doi:10.2310/7290.2014.00026.
    1. Lassmann M, Treves ST. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41:1036–1041. doi: 10.1007/s00259-014-2731-9.
    1. Parker JA, Graham LS, Royal HD, Todd-Pokropek AE, Daube-Witherspoon ME, Yester MV. SNM procedure guideline for general imaging 6.0. Reston, VA: Society of Nuclear Medicine and Molecular Imaging; 2010. . Accessed 11 May 2016.
    1. Busemann Sokole E, Plachcinska A, Britten A, Lyra Georgosopoulou M, Tindale W, Klett R. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:662–671. doi: 10.1007/s00259-009-1347-y.
    1. Brown ML, O’Connor MK, Hung JC, Hayostek RJ. Technical aspects of bone scintigraphy. Radiol Clin North Am. 1993;31:721–730.
    1. Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–1804.
    1. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med. 2006;47:1227–1234.
    1. Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Turler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67. doi: 10.1007/s00259-013-2532-6.
    1. Ryan CJ, Shah S, Efstathiou E, Smith MR, Taplin ME, Bubley GJ, et al. Phase II study of abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clin Cancer Res. 2011;17:4854–4861. doi: 10.1158/1078-0432.CCR-11-0815.
    1. ICRP. Radiation dose to patients from radiopharmaceuticals (addendum to ICRP publication 53). ICRP publication 80. Ann ICRP. 1998;28:1–126.
    1. Mettler FA, Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–263. doi: 10.1148/radiol.2481071451.
    1. Brix G, Nekolla EA, Borowski M, Nosske D. Radiation risk and protection of patients in clinical SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S125–S136. doi: 10.1007/s00259-013-2543-3.

Source: PubMed

3
Se inscrever