Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi

Yu-Chen Liu, Wen Liang Chen, Wei-Hsiang Kung, Hsien-Da Huang, Yu-Chen Liu, Wen Liang Chen, Wei-Hsiang Kung, Hsien-Da Huang

Abstract

Background: Emerging evidence indicates that plant miRNAs can present within human circulating system through dietary intake and regulate human gene expression. Hence we deduced that comestible plants miRNAs can be identified in the public available small RNA sequencing data sets.

Results: In this study, we identified abundant plant miRNAs sequences from 410 human plasma small RNA sequencing data sets. One particular plant miRNA miR2910, conserved in fruits and vegetables, was found to present in high relative amount in the plasma samples. This miRNA, with same 6mer and 7mer-A1 target seed sequences as hsa-miR-4259 and hsa-miR-4715-5p, was predicted to target human JAK-STAT signaling pathway gene SPRY4 and transcription regulation genes.

Conclusions: Through analysis of public available plasma small RNA sequencing data, we found the supporting evidence for the plant miRNAs cross kingdom RNAi within human circulating system.

Keywords: Circulating miRNAs; Cross Kingdom RNAi; Plant miRNAs; miR2910.

Figures

Fig. 1
Fig. 1
Predicted target human genes of abundant plant miRNAs. The predicted miR2910, miR2916 and miR2018 targets through miRTar [12] are illustrated in this figure. The pink diamond shape nodes represent plant miRNAs while the round blue nodes represent human genes
Fig. 2
Fig. 2
Summary of the data analysis process. The data analysis pipeline designed to detect the comestible plants miRNAs in human plasma samples is summarized in this figure. The collected human circulating small RNA-seq reads were align to the plant genome. The existence of plant miRNAs was examined through the algorithm of miRDeep2 package [29]

References

    1. Pradère U, Hall J. Site-Specific Difunctionalization of Structured RNAs Yields Probes for microRNA Maturation. Bioconjug Chem. 2016;27(3):681–687. doi: 10.1021/acs.bioconjchem.5b00661.
    1. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–154. doi: 10.1016/S1672-0229(08)60044-3.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi: 10.1016/S0092-8674(04)00045-5.
    1. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101(10):2087–2092. doi: 10.1111/j.1349-7006.2010.01650.x.
    1. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–437. doi: 10.1038/nrc3066.
    1. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–126. doi: 10.1038/cr.2011.158.
    1. Denzler R, Stoffel M. Uptake and function studies of maternal milk-derived microRNAs. J Biol Chem. 2015;290(39):23680–23691. doi: 10.1074/jbc.M115.676734.
    1. Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol. 2013;31(11):965–967. doi: 10.1038/nbt.2737.
    1. Micó V, Martín R, Lasunción MA, Ordovás JM, Daimiel L. Unsuccessful Detection of Plant MicroRNAs in Beer, Extra Virgin Olive Oil and Human Plasma after an Acute Ingestion of Extra Virgin Olive Oil. Plant Foods Hum Nutr. 2016;71(1):102–108. doi: 10.1007/s11130-016-0534-9.
    1. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144(10):1495–1500. doi: 10.3945/jn.114.196436.
    1. Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26(2):217–228. doi: 10.1038/cr.2016.13.
    1. Hsu JB-K, Chiu C-M, Hsu S-D, Huang W-Y, Chien C-H, Lee T-Y, Huang H-D. miRTar: an integrated system for identifying miRNA-target interactions in human. BMC bioinf. 2011;12:1. doi: 10.1186/1471-2105-12-1.
    1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389.
    1. Wang Y-G, An M, Zhou S-F, She Y-H, Li W-C, Fu F-L. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochem Genet. 2014;52(11–12):474–493. doi: 10.1007/s10528-014-9661-x.
    1. Gonzalez-Ibeas D, Blanca J, Donaire L, Saladié M, Mascarell-Creus A, Cano-Delgado A, Garcia-Mas J, Llave C, Aranda MA. Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics. 2011;12(1):1. doi: 10.1186/1471-2164-12-393.
    1. Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics. 2011;98(6):460–468. doi: 10.1016/j.ygeno.2011.08.005.
    1. Sablok G, Luo C, Lee WS, Rahman F, Tatarinova TV, Harikrishna JA, Luo Z. Bioinformatic analysis of fruit-specific expressed sequence tag libraries of Diospyros kaki Thunb: view at the transcriptome at different developmental stages. 3 Biotech. 2011;1:35–45. doi: 10.1007/s13205-011-0005-9.
    1. Das A, Mondal TK. Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis) Am J Plant Sci. 2010;1(02):77. doi: 10.4236/ajps.2010.12010.
    1. Low E-TL, Rosli R, Jayanthi N, Azizi N, Chan K-L, Maqbool NJ, Maclean P, Brauning R, McCulloch A, Moraga R. Analyses of hypomethylated oil palm gene space. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0086728.
    1. Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, Ooi LC-L, Ooi SE, Chan K-L, Halim MA. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature. 2013;500(7462):335–339. doi: 10.1038/nature12309.
    1. Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics. 2009;9(4):499–511. doi: 10.1007/s10142-009-0128-9.
    1. Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS ONE. 2012;7(7) doi: 10.1371/journal.pone.0040859.
    1. Yuan T, Huang X, Woodcock M, Du M, Dittmar R, Wang Y, Tsai S, Kohli M, Boardman L, Patel T. Plasma extracellular RNA profiles in healthy and cancer patients. Sci Rep. 2016;6:23202. doi: 10.1038/srep23202.
    1. Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H, Yang C-D, Hong H-C, Wei T-Y, Tu S-J. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–D247. doi: 10.1093/nar/gkv1258.
    1. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27.
    1. Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2010;39:D19–21. doi: 10.1093/nar/gkq1019.
    1. Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC bioinf. 2014;15(1):1. doi: 10.1186/1471-2105-15-1.
    1. Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7(2) doi: 10.1371/journal.pone.0030619.
    1. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. doi: 10.1093/nar/gkr688.
    1. Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z. PMRD: plant microRNA database. Nucleic Acids Res. 2010;38(suppl 1):D806–D813. doi: 10.1093/nar/gkp818.
    1. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics. 2009;3(11):654–657. doi: 10.1038/nphoton.2009.187.
    1. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):D68–D73. doi: 10.1093/nar/gkt1181.
    1. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):1. doi: 10.1186/gb-2007-8-9-r183.

Source: PubMed

3
Se inscrever