Effects of cycling workstation to get tertiary employee moving on their overall health: study protocol for a REMOVE trial

Terry Guirado, Lore Metz, Bruno Pereira, Audrey Bergouignan, David Thivel, Martine Duclos, Terry Guirado, Lore Metz, Bruno Pereira, Audrey Bergouignan, David Thivel, Martine Duclos

Abstract

Background: Sedentary behaviour (SB) and low levels of physical activity (PA) are predictors of morbidity and mortality. Tertiary employees spend a considerable amount of their daily time seated and new efficient strategies to both reduce sedentary time and increase physical activity are needed. In that context, the REMOVE study aims at evaluating the health effects of a 24-week cycling desk intervention among office workers.

Methods: A prospective, open-label, multicentre, two-arm parallel, randomized controlled trial (RCT) will be conducted in office-sitting desk workers. Office workers (N = 80) who have 0.8 full time equivalent hours (FTE) and 75% of this time in a sitting position will be recruited from tertiary worksites in Clermont-Ferrand, France. Subjects will be randomly assigned to one of the two following interventions: (i) PPM6: performance of two 30 min of cycling desk (using portable pedal exercise machine-PPM) per working day for 6 months or (ii) CTL_PPM3: 3 months with no intervention (control) followed by 3 months during which workers will be asked to complete two 30 min of PPM per working day. At baseline (T0), at 3 months (T1) and at 6 months (T2) after the start of the interventions, primary outcomes; 7-day PA and SB (3D-accelerometers), secondary outcomes; body composition (bioelectrical impedance), physical fitness (aerobic fitness, upper and lower limb strength), metabolic outcomes (fasting blood samples), self-perceived stress, anxiety, quality of life at work and job strain (questionnaires), tertiary outcomes; resting metabolic rate and cycling energy expenditure (indirect calorimetry) and eating behaviours (questionnaires) will be measured. An ergonomic approach based on observations and individual interviews will be used to identify parameters that could determine adherence.

Discussion: The REMOVE study will be the first RCT to assess the effects of cycling workstations on objectively measured PA and SB during working and non-working hours and on key physiological and psychological health outcomes. This study will provide important information regarding the implementation of such cycling workstations in office workers and on the associated potential health benefits.

Trial registration: ClinicalTrials.gov NCT04153214 . Registered on November 2019, version 1.

Keywords: Cycling workstation; Physical activity; Prevention; Randomized controlled trial; Sedentary behaviours; Tertiary societies; Workplace.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study overview

References

    1. Sedentary Behaviour Research Network Letter to the editor: standardized use of the terms ‘sedentary’ and ‘sedentary behaviours’. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2012;37(3):540–542. doi: 10.1139/h2012-024.
    1. Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017 10;14(1):75.
    1. Acosta-Manzano P, Segura-Jiménez V, Coll-Risco I, Borges-Cosic M, Castro-Piñero J, Delgado-Fernández M, Aparicio VA. Association of sedentary time and physical fitness with ideal cardiovascular health in perimenopausal women: The FLAMENCO project. Maturitas. 2019;120:53–60. doi: 10.1016/j.maturitas.2018.11.015.
    1. van der Velde JHPM, Schaper NC, Stehouwer CDA, van der Kallen CJH, Sep SJS, Schram MT, Henry RMA, Dagnelie PC, Eussen SJPM, van Dongen MCJM, Savelberg HHCM, Koster A. Which is more important for cardiometabolic health: sedentary time, higher intensity physical activity or cardiorespiratory fitness? The Maastricht Study. Diabetologia. 2018;61(12):2561–2569. doi: 10.1007/s00125-018-4719-7.
    1. Bellettiere J, Winkler EAH, Chastin SFM, Kerr J, Owen N, Dunstan DW, Healy GN. Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PloS One. 2017;12(6):e0180119. doi: 10.1371/journal.pone.0180119.
    1. Diaz KM, Goldsmith J, Greenlee H, Strizich G, Qi Q, Mossavar-Rahmani Y, Vidot DC, Buelna C, Brintz CE, Elfassy T, Gallo LC, Daviglus ML, Sotres-Alvarez D, Kaplan RC. Prolonged, uninterrupted sedentary behavior and glycemic biomarkers among US Hispanic/Latino adults: the HCHS/SOL (Hispanic Community Health Study/Study of Latinos) Circulation. 2017;136(15):1362–1373. doi: 10.1161/CIRCULATIONAHA.116.026858.
    1. Ashford NA, Caldart CC. Technology, law, and the working environment. Washington, DC: Revised Edition: Island Press; 1996.
    1. Autor DH, Levy F, Murnane RJ. The skill content of recent technological change: an empirical exploration. Q J Econ. 2003;118(4):1279–1333. doi: 10.1162/003355303322552801.
    1. Freeman RB. America Works: thoughts on an Exceptional U.S. labor market: New York: Russell Sage Foundation; 2007.
    1. Choi B, Schnall PL, Yang H, Dobson M, Landsbergis P, Israel L, Karasek R, Baker D. Sedentary work, low physical job demand, and obesity in US workers. Am J Ind Med. 2010;53(11):1088–1101. doi: 10.1002/ajim.20886.
    1. Wick K, Faude O, Schwager S, Zahner L, Donath L. Deviation between self-reported and measured occupational physical activity levels in office employees: effects of age and body composition. Int Arch Occup Environ Health. 2016;89(4):575–582. doi: 10.1007/s00420-015-1095-1.
    1. Dugdill L, Brettle A, Hulme C, McCluskey S, Long AF. Workplace physical activity interventions: a systematic review. Int J Workplace Health Manag. 2008;1(1):20–40. doi: 10.1108/17538350810865578.
    1. Genin PM, Dutheil F, Larras B, Esquirol Y, Boirie Y, Tremblay A, Pereira B, Praznoczy C, Thivel D, Duclos M. Promoting physical activity and reducing sedentary time among tertiary workers: position stand from the French National ONAPS. J Phys Act Health. 2019;16(9):677–678. doi: 10.1123/jpah.2019-0154.
    1. León-Muñoz LM, Martínez-Gómez D, Balboa-Castillo T, López-García E, Guallar-Castillón P, Rodríguez-Artalejo F. Continued sedentariness, change in sitting time, and mortality in older adults. Med Sci Sports Exerc. 2013;45(8):1501–1507. doi: 10.1249/MSS.0b013e3182897e87.
    1. Torbeyns T, Bailey S, Bos I, Meeusen R. Active workstations to fight sedentary behaviour. Sports Med Auckl NZ. 2014;44(9):1261–1273. doi: 10.1007/s40279-014-0202-x.
    1. Dupont F, Léger P-M, Begon M, Lecot F, Sénécal S, Labonté-Lemoyne E, Mathieu ME. Health and productivity at work: which active workstation for which benefits: a systematic review. Occup Environ Med. 2019;76(5):281–294. doi: 10.1136/oemed-2018-105397.
    1. Josaphat K-J, Kugathasan TA, Reid RER, Begon M, Léger P-M, Labonté-Lemoyne E, et al. Use of active workstations in individuals with overweight or obesity: a systematic review. Obesity. 2019;27(3):362–379. doi: 10.1002/oby.22388.
    1. Canu M-H, Fourneau J, Coq J-O, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E. Interplay between hypoactivity, muscle properties and motor command: how to escape the vicious deconditioning circle? Ann Phys Rehabil Med. 2019;62(2):122–127. doi: 10.1016/j.rehab.2018.09.009.
    1. Shrestha N, Kukkonen-Harjula KT, Verbeek JH, Ijaz S, Hermans V, Pedisic Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst Rev. 2018;12:CD010912.
    1. Mark DB, Lauer MS. Exercise capacity: the prognostic variable that doesn’t get enough respect. Circulation. 2003;108(13):1534–1536. doi: 10.1161/01.CIR.0000094408.38603.7E.
    1. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801. doi: 10.1056/NEJMoa011858.
    1. Wen CP, Wai JPM, Tsai MK, Yang YC, Cheng TYD, Lee M-C, Chan HT, Tsao CK, Tsai SP, Wu X. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet Lond Engl. 2011;378(9798):1244–1253. doi: 10.1016/S0140-6736(11)60749-6.
    1. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Lond Engl. 2015;386(9990):266–273. doi: 10.1016/S0140-6736(14)62000-6.
    1. Genin P, Beaujouan J, Thivel D, Duclos M. Is workplace an appropriate setting for the promotion of physical activity? A new framework for worksite interventions among employees. Work Read Mass. 2019;62(3):421–426.
    1. Carr LJ, Walaska KA, Marcus BH. Feasibility of a portable pedal exercise machine for reducing sedentary time in the workplace. Br J Sports Med. 2012;46(6):430–435. doi: 10.1136/bjsm.2010.079574.
    1. Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;21:366.
    1. Matthews CE, Keadle SK, Troiano RP, Kahle L, Koster A, Brychta R, van Domelen D, Caserotti P, Chen KY, Harris TB, Berrigan D. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr. 2016;104(5):1424–1432. doi: 10.3945/ajcn.116.135129.
    1. Stamatakis E, Ekelund U, Ding D, Hamer M, Bauman AE, Lee I-M. Is the time right for quantitative public health guidelines on sitting? A narrative review of sedentary behaviour research paradigms and findings. Br J Sports Med. 2019;53(6):377–382. doi: 10.1136/bjsports-2018-099131.
    1. Aguilar-Farias N, Martino-Fuentealba P, Salom-Diaz N, Brown WJ. How many days are enough for measuring weekly activity behaviours with the ActivPAL in adults? J Sci Med Sport. 2019;22(6):684–688. doi: 10.1016/j.jsams.2018.12.004.
    1. Ozemek C, Kirschner MM, Wilkerson BS, Byun W, Kaminsky LA. Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living. Physiol Meas. 2014;35(2):129–138. doi: 10.1088/0967-3334/35/2/129.
    1. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. doi: 10.1249/mss.0b013e31815a51b3.
    1. Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40(12):992–997. doi: 10.1136/bjsm.2006.030262.
    1. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):1561–1567. doi: 10.1249/MSS.0b013e31820ce174.
    1. An H-S, Kim Y, Lee J-M. Accuracy of inclinometer functions of the activPAL and ActiGraph GT3X+: A focus on physical activity. Gait Posture. 2017;51:174–180. doi: 10.1016/j.gaitpost.2016.10.014.
    1. Ashwell M, Cole TJ, Dixon AK. Ratio of waist circumference to height is strong predictor of intra-abdominal fat. BMJ. 1996;313(7056):559–560. doi: 10.1136/bmj.313.7056.559d.
    1. Swainson MG, Batterham AM, Tsakirides C, Rutherford ZH, Hind K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLOS ONE. 2017;12(5):e0177175. doi: 10.1371/journal.pone.0177175.
    1. Jean-Pierre D. Body fat distribution and risk of cardiovascular disease. Circulation. 2012;126(10):1301–1313. doi: 10.1161/CIRCULATIONAHA.111.067264.
    1. Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207–215. doi: 10.1159/000471488.
    1. Andreasson A, Hagström H, Sköldberg F, Önnerhag K, Carlsson AC, Schmidt PT, Forsberg AM. The prediction of colorectal cancer using anthropometric measures: a Swedish population-based cohort study with 22 years of follow-up. United Eur Gastroenterol J. 2019;7(9):1250–1260. doi: 10.1177/2050640619854278.
    1. Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62(6):933–947. doi: 10.1136/gutjnl-2013-304701.
    1. Morán Pascual E, Martínez Sarmiento M, Budía Alba A, Broseta Rico E, Cámara Gómez R, Boronat TF. Central body fat mass measured by bioelectrical impedanciometry but not body mass index is a high-grade prostate cancer risk factor. Urol Int. 2017;98(1):28–31. doi: 10.1159/000447249.
    1. Motamed N, Rabiee B, Hemasi GR, Ajdarkosh H, Khonsari MR, Maadi M, et al. Body roundness index and waist-to-height ratio are strongly associated with non-alcoholic fatty liver disease: a population-based study. Hepat Mon. 2016;16(9):e39575. doi: 10.5812/hepatmon.39575.
    1. Rohan TE, Heo M, Choi L, Datta M, Freudenheim JL, Kamensky V, Ochs-Balcom HM, Qi L, Thomson CA, Vitolins MZ, Wassertheil-Smoller S, Kabat GC. Body fat and breast cancer risk in postmenopausal women: a longitudinal study. J Cancer Epidemiol. 2013;2013:1–13. doi: 10.1155/2013/754815.
    1. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–482. doi: 10.1093/ajcn/84.3.475.
    1. Ravussin E, Burnand B, Schutz Y, Jéquier E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am J Clin Nutr. 1982;35(3):566–573. doi: 10.1093/ajcn/35.3.566.
    1. Wang J-G, Zhang Y, Chen H-E, Li Y, Cheng X-G, Xu L, Guo Z, Zhao XS, Sato T, Cao QY, Chen KM, Li B. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. J Strength Cond Res. 2013;27(1):236–243. doi: 10.1519/JSC.0b013e31824f2040.
    1. Verney J, Schwartz C, Amiche S, Pereira B, Thivel D. Comparisons of a multi-frequency bioelectrical impedance analysis to the dual-energy X-Ray absorptiometry scan in healthy young adults depending on their physical activity level. J Hum Kinet. 2015;47(1):73–80. doi: 10.1515/hukin-2015-0063.
    1. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–2035. doi: 10.1001/jama.2009.681.
    1. Laukkanen JA, Zaccardi F, Khan H, Kurl S, Jae SY, Rauramaa R. Long-term change in cardiorespiratory fitness and all-cause mortality: a population-based follow-up study. Mayo Clin Proc. 2016;91(9):1183–1188. doi: 10.1016/j.mayocp.2016.05.014.
    1. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger J RS, et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282(16):1547–1553. doi: 10.1001/jama.282.16.1547.
    1. Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–611. doi: 10.7326/0003-4819-132-8-200004180-00002.
    1. Leong DP, Teo KK. Predicting cardiovascular disease from handgrip strength: the potential clinical implications. Expert Rev Cardiovasc Ther. 2015;13(12):1277–1279. doi: 10.1586/14779072.2015.1101342.
    1. Chatterjee S, Chatterjee P, Mukherjee PS, Bandyopadhyay A. Validity of Queen’s College step test for use with young Indian men. Br J Sports Med. 2004;38(3):289–291. doi: 10.1136/bjsm.2002.002212.
    1. Li R, Xia J, Zhang X, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50(3):458–467. doi: 10.1249/MSS.0000000000001448.
    1. Kuh D, Bassey EJ, Butterworth S, Hardy R, Wadsworth MEJ. Grip strength, postural control, and functional leg power in a representative cohort of British men and women: associations with physical activity, health status, and socioeconomic conditions. J Gerontol Ser A. 2005;60(2):224–231. doi: 10.1093/gerona/60.2.224.
    1. Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, Guralnik JM. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol Ser A. 2000;55(3):M168–M173. doi: 10.1093/gerona/55.3.M168.
    1. Norman K, Stobäus N, Gonzalez MC, Schulzke J-D, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30(2):135–142. doi: 10.1016/j.clnu.2010.09.010.
    1. Brown LE, Whitehurst M, Bryant JR, Buchalter DN. Reliability of the Biodex system 2 isokinetic dynamometer concentric mode. Isokinet Exerc Sci. 1993;3(3):160–163. doi: 10.3233/IES-1993-3307.
    1. Taylor NAS, Sanders RH, Howick EI, Stanley SN. Static and dynamic assessment of the Biodex dynamometer. Eur J Appl Physiol. 1991;62(3):180–188. doi: 10.1007/BF00643739.
    1. Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32(5):590–597. doi: 10.1093/eurheartj/ehq451.
    1. Hamer M, Stamatakis E, Steptoe A. Effects of substituting sedentary time with physical activity on metabolic risk. Med Sci Sports Exerc. 2014;46(10):1946–1950. doi: 10.1249/MSS.0000000000000317.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) Diabetes Care. 2008;31(2):369–371. doi: 10.2337/dc07-1795.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Hamer M, Stamatakis E. Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Med Sci Sports Exerc. 2014;46(4):718–723. doi: 10.1249/MSS.0000000000000156.
    1. Endrighi R, Steptoe A, Hamer M. The effect of experimentally induced sedentariness on mood and psychobiological responses to mental stress. Br J Psychiatry. 2016;208(3):245–251. doi: 10.1192/bjp.bp.114.150755.
    1. Teychenne M, Ball K, Salmon J. Physical activity, sedentary behavior and depression among disadvantaged women. Health Educ Res. 2010;25(4):632–644. doi: 10.1093/her/cyq008.
    1. Teychenne M, Ball K, Salmon J. Sedentary behavior and depression among adults: a review. Int J Behav Med. 2010;17(4):246–254. doi: 10.1007/s12529-010-9075-z.
    1. Stubbs B, Vancampfort D, Firth J, Schuch FB, Hallgren M, Smith L, Gardner B, Kahl KG, Veronese N, Solmi M, Carvalho AF, Koyanagi A. Relationship between sedentary behavior and depression: a mediation analysis of influential factors across the lifespan among 42,469 people in low- and middle-income countries. J Affect Disord. 2018;229:231–238. doi: 10.1016/j.jad.2017.12.104.
    1. Stubbs B, Vancampfort D, Rosenbaum S, Firth J, Cosco T, Veronese N, Salum GA, Schuch FB. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: a meta-analysis. Psychiatry Res. 2017;249:102–108. doi: 10.1016/j.psychres.2016.12.020.
    1. Netz Y. Is the comparison between exercise and pharmacologic treatment of depression in the clinical practice guideline of the American College of Physicians evidence-based? Front Pharmacol. 2017;8:257. doi: 10.3389/fphar.2017.00257.
    1. Gunduz-Cinar O, Hill MN, McEwen BS, Holmes A. Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci. 2013;34(11):637–644. doi: 10.1016/j.tips.2013.08.008.
    1. Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H. Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology. 2012;37(11):2416–2427. doi: 10.1038/npp.2012.100.
    1. Hill MN, Miller GE, Ho W-SV, Gorzalka BB, Hillard CJ. Serum Endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry. 2008;41(2):48–53. doi: 10.1055/s-2007-993211.
    1. Assoumou HGN, Pichot V, Barthelemy J. c., Dauphinot V, Celle S, Gosse P, et al. Metabolic syndrome and short-term and long-term heart rate variability in elderly free of clinical cardiovascular disease: the PROOF study. Rejuvenation Res. 2010;13(6):653–663. doi: 10.1089/rej.2010.1019.
    1. Díaz-Rodríguez L, Arroyo-Morales M, Fernández-de-las-Peñas C, García-Lafuente F, García-Royo C, Tomás-Rojas I. Immediate effects of Reiki on heart rate variability, cortisol levels, and body temperature in health care professionals with burnout. Biol Res Nurs. 2011;13(4):376–382. doi: 10.1177/1099800410389166.
    1. Lucini D, Riva S, Pizzinelli P, Pagani M. Stress management at the worksite: reversal of symptoms profile and cardiovascular dysregulation. Hypertension. 2007;49(2):291–297. doi: 10.1161/01.HYP.0000255034.42285.58.
    1. Dutheil F, Boudet G, Perrier C, Lac G, Ouchchane L, Chamoux A, Duclos M, Schmidt J. JOBSTRESS study: comparison of heart rate variability in emergency physicians working a 24-hour shift or a 14-hour night shift — A randomized trial. Int J Cardiol. 2012;158(2):322–325. doi: 10.1016/j.ijcard.2012.04.141.
    1. Li X, Yu S, Chen H, Lu C, Zhang K, Li F. Cardiovascular autonomic function analysis using approximate entropy from 24-h heart rate variability and its frequency components in patients with type 2 diabetes. J Diabetes Investig. 2015;6(2):227–235. doi: 10.1111/jdi.12270.
    1. Heart Rate Variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.
    1. Lesage FX, Berjot S. Validity of occupational stress assessment using a visual analogue scale. Occup Med. 2011;61(6):434–436. doi: 10.1093/occmed/kqr037.
    1. Ekman P, Davidson RJ, Ricard M, Alan WB. Buddhist and psychological perspectives on emotions and well-being. Curr Dir Psychol Sci. 2005;14(2):59–63. doi: 10.1111/j.0963-7214.2005.00335.x.
    1. Juneau C, Pellerin N, Trives E, Ricard M, Shankland R, Dambrun M. Reliability and validity of an equanimity questionnaire: the two-factor equanimity scale (EQUA-S) PeerJ. 2020;8:e9405. doi: 10.7717/peerj.9405.
    1. Glass TA, McAtee MJ. Behavioral science at the crossroads in public health: extending horizons, envisioning the future. Soc Sci Med. 2006;62(7):1650–1671. doi: 10.1016/j.socscimed.2005.08.044.
    1. Kim J, Im J-S, Choi Y-H. Objectively measured sedentary behavior and moderate-to-vigorous physical activity on the health-related quality of life in US adults: The National Health and Nutrition Examination Survey 2003–2006. Qual Life Res. 2017;26(5):1315–1326. doi: 10.1007/s11136-016-1451-y.
    1. Karasek R, Choi B, Ostergren P-O, Ferrario M, Smet PD. Testing two methods to create comparable scale scores between the job content questionnaire (JCQ) and JCQ-like questionnaires in the European JACE study. Int J Behav Med. 2007;14(4):189–201. doi: 10.1007/BF03002993.
    1. Karasek RA. Job demands, job decision latitude, and mental strain: implications for job redesign. Adm Sci Q. 1979;24(2):285–308. doi: 10.2307/2392498.
    1. Canivet C, Choi B, Karasek R, Moghaddassi M, Staland-Nyman C, Östergren P-O. Can high psychological job demands, low decision latitude, and high job strain predict disability pensions? A 12-year follow-up of middle-aged Swedish workers. Int Arch Occup Environ Health. 2013;86(3):307–319. doi: 10.1007/s00420-012-0766-4.
    1. Siegrist J, Starke D, Chandola T, Godin I, Marmot M, Niedhammer I, Peter R. The measurement of effort–reward imbalance at work: European comparisons. Soc Sci Med. 2004;58(8):1483–1499. doi: 10.1016/S0277-9536(03)00351-4.
    1. Siegrist J, Wahrendorf M, Goldberg M, Zins M, Hoven H. Is effort–reward imbalance at work associated with different domains of health functioning? Baseline results from the French CONSTANCES study. Int Arch Occup Environ Health. 2019;92(4):467–480. doi: 10.1007/s00420-018-1374-8.
    1. Descatha A, Roquelaure Y, Chastang J-F, Evanoff B, Melchior M, Mariot C, Ha C, Imbernon E, Goldberg M, Leclerc A. Validity of Nordic-style questionnaires in the surveillance of upper-limb work-related musculoskeletal disorders. Scand J Work Environ Health. 2007;33(1):58–65. doi: 10.5271/sjweh.1065.
    1. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, Jørgensen K. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon. 1987;18(3):233–237. doi: 10.1016/0003-6870(87)90010-X.
    1. Roquelaure Y, Ha C, Leclerc A, Touranchet A, Sauteron M, Melchior M, Imbernon E, Goldberg M. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arthritis Care Res. 2006;55(5):765–778. doi: 10.1002/art.22222.
    1. Gourmelen J, Chastang J-F, Ozguler A, Lanoë J-L, Ravaud J-F, Leclerc A. Frequency of low back pain among men and women aged 30 to 64 years in France. Results of two national surveys. Ann Réadapt Médecine Phys. 2007;50(8):640–644. doi: 10.1016/j.annrmp.2007.05.009.
    1. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301. doi: 10.1016/0026-0495(88)90110-2.
    1. Nieman DC, Austin MD, Benezra L, Pearce S, McInnis T, Unick J, Gross SJ. Validation of Cosmed’s FitMateTM in measuring oxygen consumption and estimating resting metabolic rate. Res Sports Med. 2006;14(2):89–96. doi: 10.1080/15438620600651512.
    1. Compher C, Frankenfield D, Keim N, Roth-Yousey L. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903. doi: 10.1016/j.jada.2006.02.009.
    1. Weir JB de V. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1–9. doi: 10.1113/jphysiol.1949.sp004363.
    1. Macfarlane DJ, Wong P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur J Appl Physiol. 2012;112(7):2539–2547. doi: 10.1007/s00421-011-2230-7.
    1. Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci J Can Sci Sport. 1991;16(1):23–29.
    1. Chaput J-P, Klingenberg L, Astrup A, Sjödin AM. Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obes Rev. 2011;12(5):e12–e20. doi: 10.1111/j.1467-789X.2010.00772.x.
    1. Chaput JP, Tremblay A, Pereira B, Boirie Y, Duclos M, Thivel D. Food intake response to exercise and active video gaming in adolescents: effect of weight status. Br J Nutr. 2016;115(3):547–553. doi: 10.1017/S0007114515004602.
    1. Blundell J, Graaf CD, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev. 2010;11(3):251–270. doi: 10.1111/j.1467-789X.2010.00714.x.
    1. de Lauzon-Guillain B, Musher-Eizenman D, Leporc E, Holub S, Charles MA. Parental feeding practices in the United States and in France: relationships with child’s characteristics and parent’s eating behavior. J Am Diet Assoc. 2009;109(6):1064–1069. doi: 10.1016/j.jada.2009.03.008.
    1. Cappelleri JC, Bushmakin AG, Gerber RA, Leidy NK, Sexton CC, Lowe MR, Karlsson J. Psychometric analysis of the Three-Factor Eating Questionnaire-R21: results from a large diverse sample of obese and non-obese participants. Int J Obes. 2009;33(6):611–620. doi: 10.1038/ijo.2009.74.
    1. Lluch A, Kahn J, Stricker-Krongrad A, Ziegler O, Drouin P, Méjean L. Internal validation of a French version of the Dutch eating behaviour questionnaire. Eur Psychiatry. 1996;11(4):198–203. doi: 10.1016/0924-9338(96)88391-X.
    1. de Lauzon B, Romon M, Deschamps V, Lafay L, Borys J-M, Karlsson J, Ducimetière P, Charles MA, Fleurbaix Laventie Ville Sante Study Group The Three-Factor Eating Questionnaire-R18 is able to distinguish among different eating patterns in a general population. J Nutr. 2004;134(9):2372–2380. doi: 10.1093/jn/134.9.2372.
    1. Genin PM, Degoutte F, Finaud J, Pereira B, Thivel D, Duclos M. Effect of a 5-month worksite physical activity program on tertiary employees overall health and fitness. J Occup Environ Med. 2017;59(2):e3–e10. doi: 10.1097/JOM.0000000000000945.
    1. Genin PM, Dessenne P, Finaud J, Pereira B, Thivel D, Duclos M. Health and fitness benefits but low adherence rate: effect of a 10-month onsite physical activity program among tertiary employees. J Occup Environ Med. 2018;60(9):e455–e462. doi: 10.1097/JOM.0000000000001394.
    1. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016;21:2.
    1. Saidj M, Menai M, Charreire H, Weber C, Enaux C, Aadahl M, Kesse-Guyot E, Hercberg S, Simon C, Oppert JM. Descriptive study of sedentary behaviours in 35,444 French working adults: cross-sectional findings from the ACTI-Cités study. BMC Public Health. 2015;15(1):379. doi: 10.1186/s12889-015-1711-8.
    1. Wirtz PH, von Känel R. Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep. 2017;19(11):1–10. doi: 10.1007/s11886-017-0919-x.
    1. Sorensen G, Landsbergis P, Hammer L, Amick BC, Linnan L, Yancey A, et al. Preventing chronic disease in the workplace: a workshop report and recommendations. Am J Public Health. 2011;101(S1):S196–S207. doi: 10.2105/AJPH.2010.300075.
    1. O’Brien KE, Beehr TA. Managing employees’ occupational stress. Stress Qual Work Life Interpers Occup Stress. 2016:181–98.
    1. Thompson WG, Foster RC, Eide DS, Levine JA. Feasibility of a walking workstation to increase daily walking. Br J Sports Med. 2008;42(3):225–228. doi: 10.1136/bjsm.2007.039479.
    1. MacEwen BT, MacDonald DJ, Burr JF. A systematic review of standing and treadmill desks in the workplace. Prev Med. 2015;70:50–58. doi: 10.1016/j.ypmed.2014.11.011.
    1. Caldwell AR, Gallagher KM, Harris BT, Rosa-Caldwell ME, Payne M, Daniels B, Ganio MS. Prolonged standing increases lower limb arterial stiffness. Eur J Appl Physiol. 2018;118(10):2249–2258. doi: 10.1007/s00421-018-3956-2.
    1. Miles-Chan JL, Dulloo AG. Posture allocation revisited: breaking the sedentary threshold of energy expenditure for obesity management. Front Physiol. 2017;8. 10.3389/fphys.2017.00420.
    1. Chastin SFM, Craemer MD, Cocker KD, Powell L, Cauwenberg JV, Dall P, et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med. 2019;53(6):370–376. doi: 10.1136/bjsports-2017-097563.
    1. Barr-Anderson DJ, AuYoung M, Whitt-Glover MC, Glenn BA, Yancey AK. Integration of short bouts of physical activity into organizational routine: a systematic review of the literature. Am J Prev Med. 2011;40(1):76–93. doi: 10.1016/j.amepre.2010.09.033.
    1. Macfarlane DJ, Taylor LH, Cuddihy TF. Very short intermittent vs continuous bouts of activity in sedentary adults. Prev Med. 2006;43(4):332–336. doi: 10.1016/j.ypmed.2006.06.002.
    1. Murphy MH, Lahart I, Carlin A, Murtagh E. The effects of continuous compared to accumulated exercise on health: a meta-analytic review. Sports Med. 2019;49(10):1585–1607. doi: 10.1007/s40279-019-01145-2.
    1. Shambrook P, Kingsley M, Taylor N, Gordon B. Accumulated or continuous exercise for glycaemic regulation and control: a systematic review with meta-analysis. BMJ Open Sport Exerc Med. 2018;4(1):e000470. 10.1136/bmjsem-2018-000470. eCollection 2018.
    1. Begg MD, Parides MK. Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data. Stat Med. 2003;22(16):2591–2602. doi: 10.1002/sim.1524.
    1. Ramos S, Maheronnaghsh S, Vila-Chã C, Vaz M, Santos J. The influence of active workstations on work performance, productivity indicators and sedentary time: a systematic review. Occup Environ Saf Health. 2019:477–83. 10.1007/978-3-030-14730-3_51.
    1. Insee. Emploi, chômage, revenus du travail. Insee Références; 2018.

Source: PubMed

3
Se inscrever