Mesenchymal Stem Cells Beyond Regenerative Medicine

Riam Shammaa, Abed El-Hakim El-Kadiry, Jamilah Abusarah, Moutih Rafei, Riam Shammaa, Abed El-Hakim El-Kadiry, Jamilah Abusarah, Moutih Rafei

Abstract

Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their therapeutic impact on tissue degeneration and immune-based pathologies. Additionally, their homing and immunomodulatory properties can be exploited in cancer malignancies to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their distinct multiple therapeutic utilities and successes/challenges thereof in both animal studies and clinical trials. We further highlight the promising potential of MSCs not only in cancer management but also in instigating tumor-specific immunity - i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the clinical advancement of MSC-based cancer vaccines to assist in contriving novel methodologies from which a therapeutic milestone might emanate.

Keywords: MSC; antigen; autoimmunity; cancer; regeneration; vaccine.

Copyright © 2020 Shammaa, El-Kadiry, Abusarah and Rafei.

Figures

FIGURE 1
FIGURE 1
MSCs as anti-cancer vaccines. MSCs can be genetically modified to overexpress cytokines to instigate innate and adaptive immunity, as a means to protect against neoplasms. Genetic modification can be also used to overexpress tumor antigens and instill anti-tumor humoral and cellular immunity. Likewise, dose- and time-dependent exposure to IFN-γ transforms MSCs, albeit transiently, into APCs capable of providing antigen-specific immune protection. This occurs through induction of MHC class I and II expression, followed by tumor antigen processing and MHC-mediated presentation to T-cells. Despite IFN-γ-induced antigen presentation, other observations report that MSCs simultaneously up-regulate PD-L1 and secrete IDO, both of which inhibit T-cells. Henceforth, overcoming the transient and temporary antigen presenting properties of IFN-γ-exposed MSCs is necessary to achieve vigorous stability and abundance of presented neoantigens, thus helping to create a clinically efficient anti-cancer vaccine.

References

    1. Aggarwal S., Pittenger M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105 1815–1822. 10.1182/blood-2004-04-1559
    1. Allers C., Sierralta W. D., Neubauer S., Rivera F., Minguell J. J., Conget P. A. (2004). Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation 78 503–508. 10.1097/01.TP.0000128334.93343.B3
    1. Al-Nbaheen M., vishnubalaji R., Ali D., Bouslimi A., Al-Jassir F., Megges M., et al. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev. Rep. 9 32–43. 10.1007/s12015-012-9365-8
    1. Amado L. C., Saliaris A. P., Schuleri K. H., St John M., Xie J.-S., Cattaneo S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 102 11474–11479. 10.1073/pnas.0504388102
    1. Anassi E., Ndefo U. A. (2011). Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. Pharm. Ther. 36 197–202.
    1. Anger F., Camara M., Ellinger E., Germer C.-T., Schlegel N., Otto C., et al. (2019). Human mesenchymal stromal cell-derived extracellular vesicles improve liver regeneration after ischemia reperfusion injury in mice. Stem Cells Dev. 28 1451–1462. 10.1089/scd.2019.0085
    1. Ansari S., Chen C., Hasani-Sadrabadi M. M., Yu B., Zadeh H. H., Wu B. M., et al. (2017). Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomater. 60 181–189. 10.1016/j.actbio.2017.07.017
    1. ANTEROGEN (2012). Cupistem® Injection. Available at: (accessed September 15, 2019).
    1. Asahara T., Takahashi T., Masuda H., Kalka C., Chen D., Iwaguro H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18 3964–3972. 10.1093/emboj/18.14.3964
    1. Bader P., Kuçi Z., Bakhtiar S., Basu O., Bug G., Dennis M., et al. (2018). Effective treatment of steroid and therapy-refractory acute graft-versus-host disease with a novel mesenchymal stromal cell product (MSC-FFM). Bone Marrow Transplant. 53 852–862. 10.1038/s41409-018-0102-z
    1. Bernardo M. E., Fibbe W. E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13 392–402. 10.1016/J.STEM.2013.09.006
    1. Bernardo M. E., Zaffaroni N., Novara F., Cometa A. M., Avanzini M. A., Moretta A., et al. (2007). Human bone marrow–derived Mesenchymal stem cells do not undergo transformation after long-term In vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 67 9142–9149. 10.1158/0008-5472.CAN-06-4690
    1. Bersenev A. (2016). Why Price for Cell/Gene Therapy Products is So High? Available at: (accessed October 21, 2019).
    1. Bhargava A., Mishra D., Banerjee S., Mishra P. K. (2012). Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 4 703–718. 10.2217/imt.12.40
    1. Bianco P., Robey P. G., Simmons P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2 313–319. 10.1016/j.stem.2008.03.002
    1. BioInformant (2019). Mesenchymal Stem Cells - Advances & Applications. Available at: (accessed September 15, 2019).
    1. Bonomi A., Coccè V., Cavicchini L., Sisto F., Dossena M., Balzarini P., et al. (2013). Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity. Int. J. Immunopathol. Pharmacol. 26 33–41. 10.1177/03946320130260S105
    1. Brahmer J. R., Tykodi S. S., Chow L. Q. M., Hwu W.-J., Topalian S. L., Hwu P., et al. (2012). Safety and activity of Anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366 2455–2465. 10.1056/NEJMoa1200694
    1. Butterfield L. H. (2015). Cancer vaccines. BMJ 350:h988. 10.1136/bmj.h988
    1. Cai B., Tan X., Zhang Y., Li X., Wang X., Zhu J., et al. (2015). Mesenchymal stem cells and cardiomyocytes interplay to prevent myocardial hypertrophy. Stem Cells Transl. Med. 4 1425–1435. 10.5966/sctm.2015-0032
    1. Cai M., Shen R., Song L., Lu M., Wang J., Zhao S., et al. (2016). Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci. Rep. 6:28250. 10.1038/srep28250
    1. Campeau P. M., Rafei M., Boivin M.-N., Sun Y., Grabowski G. A., Galipeau J. (2009). Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome. Blood 114 3181–3190. 10.1182/blood-2009-02-205708
    1. Caplan A. I. (1991). Mesenchymal stem cells. J. Orthop. Res. 9 641–650. 10.1002/jor.1100090504
    1. Caplan A. I., Dennis J. E. (2006). Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98 1076–1084. 10.1002/jcb.20886
    1. Chambers J. D., Neumann P. J. (2011). Listening to provenge - What a costly cancer treatment says about future medicare policy. N. Engl. J. Med. 364 1687–1689. 10.1056/NEJMp1103057
    1. Chan J. L., Tang K. C., Patel A. P., Bonilla L. M., Pierobon N., Ponzio N. M., et al. (2006). Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107 4817–4824. 10.1182/blood-2006-01-0057
    1. Cheever M. A., Higano C. S. (2011). PROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17 3520–3526. 10.1158/1078-0432.CCR-10-3126
    1. Chen L., Tredget E. E., Wu P. Y. G., Wu Y. (2008). Paracrine factors of Mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886. 10.1371/journal.pone.0001886
    1. Chen Q., Shou P., Zheng C., Jiang M., Cao G., Yang Q., et al. (2016). Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23 1128–1139. 10.1038/cdd.2015.168
    1. Chen X., Lin X., Zhao J., Shi W., Zhang H., Wang Y., et al. (2008). A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther. 16 749–756. 10.1038/MT.2008.3
    1. Cheng Z., Ou L., Zhou X., Li F., Jia X., Zhang Y., et al. (2008). Targeted migration of Mesenchymal stem cells modified with CXCR4 Gene to infarcted myocardium improves cardiac performance. Mol. Ther. 16 571–579. 10.1038/sj.mt.6300374
    1. Chisholm J., Ruff C., Viswanathan S. (2019). Current state of health Canada regulation for cellular and gene therapy products: potential cures on the horizon. Cytotherapy 21 686–698. 10.1016/j.jcyt.2019.03.005
    1. Choi J.-J., Yoo S.-A., Park S.-J., Kang Y.-J., Kim W.-U., Oh I.-H., et al. (2008). Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin. Exp. Immunol. 153 269–276. 10.1111/j.1365-2249.2008.03683.x
    1. Chung E., Son Y. (2014). Crosstalk between mesenchymal stem cells and macrophages in tissue repair. Tissue Eng. Regen. Med. 11 431–438. 10.1007/s13770-014-0072-1
    1. Coccè V., Farronato D., Brini A. T., Masia C., Giannì A. B., Piovani G., et al. (2017). Drug loaded gingival Mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci. Rep. 7:9376. 10.1038/s41598-017-09175-4
    1. Coffelt S. B., Marini F. C., Watson K., Zwezdaryk K. J., Dembinski J. L., LaMarca H. L., et al. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc. Natl. Acad. Sci. U.S.A. 106 3806–3811. 10.1073/pnas.0900244106
    1. Conforti A., Starc N., Biagini S., Tomao L., Pitisci A., Algeri M., et al. (2016). Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget 7 77416–77429. 10.18632/oncotarget.12678
    1. Constantin G., Marconi S., Rossi B., Angiari S., Calderan L., Anghileri E., et al. (2009). Adipose-derived Mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27 2624–2635. 10.1002/stem.194
    1. Corestem (2015). ALS (NeuroNata-R®). Available at: (accessed September 15, 2019).
    1. Cousin B., Ravet E., Poglio S., De Toni F., Bertuzzi M., Lulka H., et al. (2009). Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4:e6278. 10.1371/journal.pone.0006278
    1. Crisostomo P. R., Wang Y., Markel T. A., Wang M., Lahm T., Meldrum D. R. (2008). Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism. Am. J. Physiol. Physiol. 294 C675–C682. 10.1152/ajpcell.00437.2007
    1. Dasari V. R., Kaur K., Velpula K. K., Gujrati M., Fassett D., Klopfenstein J. D., et al. (2010b). Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One 5:e10350. 10.1371/journal.pone.0010350
    1. Dasari V. R., Velpula K. K., Kaur K., Fassett D., Klopfenstein J. D., Dinh D. H., et al. (2010a). Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS One 5:e11813. 10.1371/journal.pone.0011813
    1. Datta J., Terhune J. H., Lowenfeld L., Cintolo J. A., Xu S., Roses R. E., et al. (2014). Optimizing dendritic cell-based approaches for cancer immunotherapy. Yale J. Biol. Med. 87 491–518.
    1. De Bari C., Dell’Accio F., Tylzanowski P., Luyten F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthrit. Rheum. 44 1928–1942. 10.1002/1529-0131(200108)
    1. De Becker A., Van Riet I. (2016). Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J. Stem Cells 8 73–87. 10.4252/wjsc.v8.i3.73
    1. De Ugarte D. A., Morizono K., Elbarbary A., Alfonso Z., Zuk P. A., Zhu M., et al. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174 101–109. 10.1159/000071150
    1. Devine S. M., Bartholomew A. M., Mahmud N., Nelson M., Patil S., Hardy W., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol. 29 244–255. 10.1016/S0301-472X(00)00635-4
    1. Ding D.-C., Shyu W.-C., Lin S.-Z. (2011). Mesenchymal stem cells. Cell Transplant. 20 5–14. 10.3727/096368910X
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D. S., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8 315–317. 10.1080/14653240600855905
    1. Dong L., Pu Y., Zhang L., Qi Q., Xu L., Li W., et al. (2018). Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 9:218. 10.1038/s41419-018-0323-5
    1. Duffy M. M., Ritter T., Ceredig R., Griffin M. D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res. Ther. 2:34. 10.1186/scrt75
    1. Duijvestein M., Vos A. C. W., Roelofs H., Wildenberg M. E., Wendrich B. B., Verspaget H. W., et al. (2010). Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59 1662–1669. 10.1136/gut.2010.215152
    1. Eggenhofer E., Hoogduijn M. J. (2012). Mesenchymal stem cell-educated macrophages. Transplant. Res. 1:12. 10.1186/2047-1440-1-12
    1. Elgaz S., Kuçi Z., Kuçi S., Bönig H., Bader P. (2019). Clinical use of mesenchymal stromal cells in the treatment of acute graft-versus-host disease. Transfus. Med. Hemother. 46 27–34. 10.1159/000496809
    1. El-Haibi C. P., Bell G. W., Zhang J., Collmann A. Y., Wood D., Scherber C. M., et al. (2012). Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl. Acad. Sci. U.S.A. 109 17460–17465. 10.1073/pnas.1206653109
    1. Eliopoulos N., Galipeau J. (2002). Green fluorescent protein in retroviral vector constructs as marker and reporter of gene expression for cell and gene therapy applications. Methods Mol. Biol. 183 353–371. 10.1385/1-59259-280-5:353
    1. Erokhin V. V., Vasil’eva I. A., Konopliannikov A. G., Chukanov V. I., Tsyb A. F., Bagdasarian T. R., et al. (2008). Systemic transplantation of autologous mesenchymal stem cells of the bone marrow in the treatment of patients with multidrug-resistant pulmonary tuberculosis. Probl. Tuberk. Bolezn. Legk. 10 3–6.
    1. European Medicines Agency (2017). Spherox. Available at: (accessed September 15, 2019).
    1. European Medicines Agency (2018a). Alofisel. Available at: (accessed September 15, 2019).
    1. European Medicines Agency (2018b). EPAR Summary for the Public. Amsterdam: European Medicines Agency.
    1. European Medicines Agency (2019). Available at: (accessed October 10, 2019).
    1. Ezquer F. E., Ezquer M. E., Vicencio J. M., Calligaris S. D. (2017). Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity. Cell Adh. Migr. 11:110. 10.1080/19336918.2016.1197480
    1. FDA (2019a). Approved Cellular and Gene Therapy Products. Available at: (accessed September 15, 2019).
    1. FDA (2019b). Statement from FDA Commissioner Scott Gottlieb, M.D. on the FDA’s New Policy Steps and Enforcement Efforts to Ensure Proper Oversight Of Stem Cell Therapies and Regenerative Medicine. Available at: (accessed September 15, 2019).
    1. Figueroa F. E., Carrión F., Villanueva S., Khoury M. (2012). Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol. Res. 45 269–277. 10.4067/S0716-97602012000300008
    1. Fitzsimmons R. E. B., Mazurek M. S., Soos A., Simmons C. A. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018 8031718. 10.1155/2018/8031718
    1. Fontaine C., Cousin W., Plaisant M., Dani C., Peraldi P. (2008). Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells 26 1037–1046. 10.1634/stemcells.2007-0974
    1. Fouillard L., Bensidhoum M., Bories D., Bonte H., Lopez M., Moseley A.-M., et al. (2003). Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 17 474–476. 10.1038/sj.leu.2402786
    1. François M., Romieu-Mourez R., Stock-Martineau S., Boivin M.-N. N., Bramson J. L., Galipeau J. (2009). Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 114 2632–2638. 10.1182/blood-2009-02-207795
    1. François S., Bensidhoum M., Mouiseddine M., Mazurier C., Allenet B., Semont A., et al. (2006). Local irradiation not only induces homing of human Mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24 1020–1029. 10.1634/stemcells.2005-0260
    1. Friedenstein A. J., Chailakhjan R. K., Lalykina K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 3, 393–403. 10.1111/j.1365-2184.1970.tb00347.x
    1. Friedenstein A. J., Petrakova K. V., Kurolesova A. I., Frolova G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230–247. Available at:
    1. Galiè M., Konstantinidou G., Peroni D., Scambi I., Marchini C., Lisi V., et al. (2008). Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene 27 2542–2551. 10.1038/sj.onc.1210920
    1. Galipeau J. (2013). The mesenchymal stromal cells dilemma- does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15 2–8. 10.1016/j.jcyt.2012.10.002
    1. Galipeau J., Sensébé L. (2018). Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22 824–833. 10.1016/j.stem.2018.05.004
    1. Gao H., Priebe W., Glod J., Banerjee D. (2009). Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27 857–865. 10.1002/stem.23
    1. García-Olmo D., García-Arranz M., Herreros D., Pascual I., Peiro C., Rodríguez-Montes J. A. (2005). A Phase I clinical trial of the treatment of crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis. Colon Rectum 48 1416–1423. 10.1007/s10350-005-0052-6
    1. Girdlestone J. (2016). Mesenchymal stromal cells with enhanced therapeutic properties. Immunotherapy 8 1405–1416. 10.2217/imt-2016-0098
    1. Gong M., Yu B., Wang J., Wang Y., Liu M., Paul C., et al. (2017). Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8 45200–45212. 10.18632/oncotarget.16778
    1. Grégoire C., Ritacco C., Hannon M., Seidel L., Delens L., Belle L., et al. (2019). Comparison of Mesenchymal stromal cells from different origins for the treatment of graft-vs.-host-disease in a humanized mouse model. Front. Immunol. 10:619. 10.3389/fimmu.2019.00619
    1. Guéry J. C., Adorini L. (1995). Dendritic cells are the most efficient in presenting endogenous naturally processed self-epitopes to class II-restricted T cells. J. Immunol. 154 536–544.
    1. Haddad R., Saldanha-Araujo F. (2014). Mechanisms of T-Cell Immunosuppression by Mesenchymal stromal cells: what do we know so far? Biomed. Res. Int. 2014 1–14. 10.1155/2014/216806
    1. Hahn J.-Y., Cho H.-J., Kang H.-J., Kim T.-S., Kim M.-H., Chung J.-H., et al. (2008). Pre-Treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol. 51 933–943. 10.1016/J.JACC.2007.11.040
    1. Hammerich L., Marron T. U., Upadhyay R., Svensson-Arvelund J., Dhainaut M., Hussein S., et al. (2019). Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25 814–824. 10.1038/s41591-019-0410-x
    1. Han I., Lee M. R., Nam K. W., Oh J. H., Moon K. C., Kim H. S. (2018). Expression of macrophage migration inhibitory factor relates to survival in high-grade osteosarcoma. Clin. Orthop. Relat. Res. 466 2107–2113. 10.1007/s11999-008-0333-1
    1. Han Z., Jing Y., Zhang S., Liu Y., Shi Y., Wei L. (2012). The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell Biosci. 2:8. 10.1186/2045-3701-2-8
    1. Hanahan D., Weinberg R. A. (2000). The hallmarks of cancer. Cell 100 57–70. 10.1016/s0092-8674(00)81683-9
    1. Hayashi Y., Tsuji S., Tsujii M., Nishida T., Ishii S., Iijima H., et al. (2008). Topical implantation of Mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J. Pharmacol. Exp. Ther. 326 523–531. 10.1124/JPET.108.137083
    1. Haynesworth S. E., Baber M. A., Caplan A. I. (1996). Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell Physiol. 166 585–592.
    1. Higano C. S., Small E. J., Schellhammer P., Yasothan U., Gubernick S., Kirkpatrick P., et al. (2010). Sipuleucel-T. Nat. Rev. Drug Discov. 9 513–514. 10.1038/nrd3220
    1. Hobernik D., Bros M. (2018). DNA vaccines-how far from clinical use? Int. J. Mol. Sci. 19:E3605. 10.3390/ijms19113605
    1. Horwitz E. M., Gordon P. L., Koo W. K. K., Marx J. C., Neel M. D., McNall R. Y., et al. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. U.S.A. 99 8932–8937. 10.1073/pnas.132252399
    1. Horwitz E. M., Prockop D. J., Fitzpatrick L. A., Koo W. W. K., Gordon P. L., Neel M., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5 309–313. 10.1038/6529
    1. Inada M., Follenzi A., Cheng K., Surana M., Joseph B., Benten D., et al. (2008). Phenotype reversion in fetal human liver epithelial cells identifies the role of an intermediate meso-endodermal stage before hepatic maturation. J. Cell Sci. 121 1002–1013. 10.1242/jcs.019315
    1. Inoue Y., Iriyama A., Ueno S., Takahashi H., Kondo M., Tamaki Y., et al. (2007). Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp. Eye Res. 85 234–241. 10.1016/J.EXER.2007.04.007
    1. Introna M., Lucchini G., Dander E., Galimberti S., Rovelli A., Balduzzi A., et al. (2014). Treatment of graft versus host disease with mesenchymal stromal cells: a phase i study on 40 adult and pediatric patients. Biol. Blood Marrow Transplant. 20 375–381. 10.1016/j.bbmt.2013.11.033
    1. Janikashvili N., Larmonier N., Katsanis E. (2010). Personalized dendritic cell-based tumor immunotherapy. Immunotherapy 2 57–68. 10.2217/imt.09.78
    1. Jarosławski S., Toumi M. (2015). Sipuleucel-T (Provenge®) - autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. Biodrugs 29 301–307. 10.1007/s40259-015-0140-7
    1. JCR Pharmaceuticals Co (2015). TEMCELL® HS Inj. Available at: (accessed September 15, 2019).
    1. Jewett A., Arasteh A., Tseng H.-C., Behel A., Arasteh H., Yang W., et al. (2010). Strategies to rescue Mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) from NK cell mediated cytotoxicity. PLoS One 5:e9874. 10.1371/journal.pone.0009874
    1. Joyce J. A., Fearon D. T. (2015). T cell exclusion, immune privilege, and the tumor microenvironment. Science 348 74–80. 10.1126/science.aaa6204
    1. Karnoub A. E., Dash A. B., Vo A. P., Sullivan A., Brooks M. W., Bell G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449 557–563. 10.1038/nature06188
    1. Kean T. J., Lin P., Caplan A. I., Dennis J. E. (2013). MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013 732742. 10.1155/2013/732742
    1. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24 1294–1301. 10.1634/stemcells.2005-0342
    1. Keyser K. A., Beagles K. E., Kiem H.-P. (2007). Comparison of mesenchymal stem cells from different tissues to suppress t-cell activation. Cell Transplant. 16 555–562. 10.3727/000000007783464939
    1. Khakoo A. Y., Pati S., Anderson S. A., Reid W., Elshal M. F., Rovira I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med. 203 1235–1247. 10.1084/JEM.20051921
    1. Kharaziha P., Hellström P. M., Noorinayer B., Farzaneh F., Aghajani K., Jafari F., et al. (2009). Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. Eur. J. Gastroenterol. Hepatol. 21 1199–1205. 10.1097/MEG.0b013e32832a1f6c
    1. Klinge P. M., Harmening K., Miller M. C., Heile A., Wallrapp C., Geigle P., et al. (2011). Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer’s disease. Neurosci. Lett. 497 6–10. 10.1016/j.neulet.2011.03.092
    1. Klopp A. H., Gupta A., Spaeth E., Andreeff M., Marini F. (2011). Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29 11–19. 10.1002/stem.559
    1. Komarova S., Roth J., Alvarez R., Curiel D. T., Pereboeva L. (2010). Targeting of mesenchymal stem cells to ovarian tumors via an artificial receptor. J. Ovarian Res. 3:12. 10.1186/1757-2215-3-12
    1. Kota D. J., Dicarlo B., Hetz R. A., Smith P., Cox C. S., Olson S. D. (2014). Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms. Sci. Rep. 4:4565. 10.1038/srep04565
    1. Krampera M. (2011). Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 25 1408–1414. 10.1038/leu.2011.108
    1. Krampera M., Cosmi L., Angeli R., Pasini A., Liotta F., Andreini A., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24 386–398. 10.1634/stemcells.2005-0008
    1. Krampera M., Glennie S., Dyson J., Scott D., Laylor R., Simpson E., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101 3722–3729. 10.1182/blood-2002-07-2104
    1. Krampera M., Sartoris S., Liotta F., Pasini A., Angeli R., Cosmi L., et al. (2007). Immune regulation by Mesenchymal stem cells derived from adult spleen and thymus. Stem Cells Dev. 16 797–810. 10.1089/scd.2007.0024
    1. Kubrova E., Qu W., Galvan M. L., Paradise C. R., Yang J., Dietz A. B., et al. (2019). Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 722:144058. 10.1016/j.gene.2019.144058
    1. Kuçi Z., Bönig H., Kreyenberg H., Bunos M., Jauch A., Janssen J. W. G., et al. (2016). Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey. Haematologica 101 985–994. 10.3324/haematol.2015.140368
    1. Kucia M., Jankowski K., Reca R., Wysoczynski M., Bandura L., Allendorf D. J., et al. (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 35 233–245. 10.1023/B:HIJO.0000032355.66152.b8
    1. Kurtzberg J., Prasad V., Grimley M. S., Horn B., Carpenter P. A., Jacobsohn D., et al. (2010). Allogeneic human mesenchymal stem cell therapy (Prochymal®) as a rescue agent for severe treatment resistant GVHD in pediatric patients. Biol. Blood Marrow Transplant. 20 229–235. 10.1016/j.bbmt.2009.12.056
    1. Kuznetsov S. A., Krebsbach P. H., Satomura K., Kerr J., Riminucci M., Benayahu D., et al. (1997). Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12 1335–1347. 10.1359/jbmr.1997.12.9.1335
    1. Kyriakidis T., Iosifidis M., Michalopoulos E., Melas I., Stavropoulos-Giokas C., Verdonk R. (2019). Good mid-term outcomes after adipose-derived culture-expanded mesenchymal stem cells implantation in knee focal cartilage defects. Knee Sur. Sport Traumatol. Arthrosc. 10.1007/s00167-019-05688-9 [Epub ahead of print].
    1. Kyriakou C., Rabin N., Pizzey A., Nathwani A., Yong K. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica 93 1457–1465. 10.3324/haematol.12553
    1. Law S., Chaudhuri S. (2013). Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am. J. Stem Cells 2 22–38.
    1. Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371 1579–1586. 10.1016/S0140-6736(08)60690-X
    1. Le Blanc K., Mougiakakos D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12 383–396. 10.1038/nri3209
    1. Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363 1439–1441. 10.1016/S0140-6736(04)16104-7
    1. Le D. T., Pardoll D. M., Jaffee E. M. (2010). Cellular vaccine approaches. Cancer J. 16 304–310. 10.1097/PPO.0b013e3181eb33d7
    1. Lechanteur C., Briquet A., Giet O., Delloye O., Baudoux E., Beguin Y. (2016). Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J. Transl. Med. 14:145. 10.1186/s12967-016-0892-y
    1. Lee J. W., Fang X., Gupta N., Serikov V., Matthay M. A. (2009). Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl. Acad. Sci. U.S.A. 106 16357–16362. 10.1073/pnas.0907996106
    1. Lee S. J., Vogelsang G., Flowers M. E. (2003). Chronic graft-versus-host disease. Biol. Blood Marrow Transplant. 9 215–233. 10.1053/bbmt.2003.50026
    1. Levy O., Brennen W. N., Han E., Rosen D. M., Musabeyezu J., Safaee H., et al. (2016). A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 91 140–150. 10.1016/j.biomaterials.2016.03.023
    1. Li H., Yu B., Zhang Y., Pan Z., Xu W., Li H. (2006). Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem. Biophys. Res. Commun. 341 320–325. 10.1016/J.BBRC.2005.12.182
    1. Li X., Lu Y., Huang W., Xu H., Chen X., Geng Q., et al. (2006). In vitro effect of adenovirus-mediated human gamma interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia. Hematol. Oncol. 24 151–158. 10.1002/hon.779
    1. Lin W., Huang L., Li Y., Fang B., Li G., Chen L., et al. (2019). Mesenchymal stem cells and cancer: clinical challenges and opportunities. Biomed. Res. Int. 2019 1–12. 10.1155/2019/2820853
    1. Liotta F., Angeli R., Cosmi L., Filì L., Manuelli C., Frosali F., et al. (2008). Toll-like receptors 3 and 4 are expressed by human bone marrow-derived Mesenchymal stem cells and can inhibit their t-cell modulatory activity by impairing notch signaling. Stem Cells 26 279–289. 10.1634/stemcells.2007-0454
    1. Liu H., Li D., Zhang Y., Li M. (2018). Inflammation, mesenchymal stem cells and bone regeneration. Histochem. Cell. Biol. 149 393–404. 10.1007/s00418-018-1643-3
    1. Llevadot J., Murasawa S., Kureishi Y., Uchida S., Masuda H., Kawamoto A., et al. (2001). HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J. Clin. Invest. 108 399–405. 10.1172/JCI13131
    1. Locatelli F., Algeri M., Trevisan V., Bertaina A. (2017). Remestemcel-L for the treatment of graft versus host disease. Expert. Rev. Clin. Immunol. 13 43–56. 10.1080/1744666X.2016.1208086
    1. Loebinger M. R., Eddaoudi A., Davies D., Janes S. M. (2009). Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 69 4134–4142. 10.1158/0008-5472.CAN-08-4698
    1. Loebinger M. R., Janes S. M. (2010). Stem cells as vectors for antitumour therapy. Thorax 65 362–369. 10.1136/thx.2009.128025
    1. Lourenco S., Teixeira V. H., Kalber T., Jose R. J., Floto R. A., Janes S. M. (2015). Macrophage migration inhibitory factor–CXCR4 Is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J. Immunol. 194 3463–3474. 10.4049/jimmunol.1402097
    1. Lu D., Chen B., Liang Z., Deng W., Jiang Y., Li S., et al. (2011). Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res. Clin. Pract. 92 26–36. 10.1016/j.diabres.2010.12.010
    1. Lu Y., Yuan Y., Wang X., Wei L., Chen Y., Cong C., et al. (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol. Ther. 7 245–251. 10.4161/cbt.7.2.5296
    1. Lucarelli E., Beccheroni A., Donati D., Sangiorgi L., Cenacchi A., Del Vento A. M., et al. (2003). Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 24 3095–3100. 10.1016/S0142-9612(03)00114-5
    1. Luft T., Dietrich S., Falk C., Conzelmann M., Hess M., Benner A., et al. (2011). Steroid-refractory GVHD: T-cell attack within a vulnerable endothelial system. Blood 118 1685–1692. 10.1182/blood-2011-02-334821
    1. Lüttichau I., Von Notohamiprodjo M., Wechselberger A., Peters C., Henger A., Seliger C., et al. (2005). Human adult CD34 - progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but Not CXCR4. Stem Cells Dev. 14 329–336. 10.1089/scd.2005.14.329
    1. Ma T., Gong K., Ao Q., Yan Y., Song B., Huang H., et al. (2013). Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in alzheimer’s disease mice. Cell Transplant. 22 113–126. 10.3727/096368913X672181
    1. Mabuchi Y., Houlihan D. D., Okano H., Matsuzaki Y. (2012). Discovering the true identity and function of mesenchymal stem cells. Inflamm. Regen. 32 146–151. 10.2492/inflammregen.32.146
    1. MacGregor R. R., Boyer J. D., Ugen K. E., Lacy K. E., Gluckman S. J., Bagarazzi M. L., et al. (1998). First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis. 178 92–100. 10.1086/515613
    1. Maestroni G. J. M., Hertens E., Galli P. (1999). Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol. Life Sci. 55 663–667. 10.1007/s000180050322
    1. Majumdar M. K., Keane-Moore M., Buyaner D., Hardy W. B., Moorman M. A., McIntosh K. R., et al. (2003). Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 10 228–241. 10.1007/bf02256058
    1. Mantia-Smaldone G. M., Chu C. S. (2013). A review of dendritic cell therapy for cancer: progress and challenges. Biodrugs 27 453–468. 10.1007/s40259-013-0030-9
    1. Marks P. W., Witten C. M., Califf R. M. (2017). Clarifying stem-cell therapy’s benefits and risks. N. Engl. J. Med. 376 1007–1009. 10.1056/NEJMp1613723
    1. Martin P. J., Uberti J. P., Soiffer R. J., Klingemann H., Waller E. K., Daly A. S., et al. (2010). Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized, placebo-controlled, multicenter phase III trial in GVHD. Biol. Blood Marrow Transplant. 16 S169–S170. 10.1016/j.bbmt.2009.12.057
    1. Mellman I., Steinman R. M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell 106 255–258.
    1. Méndez-Ferrer S., Michurina T. V., Ferraro F., Mazloom A. R., MacArthur B. D., Lira S. A., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466 829–834. 10.1038/nature09262
    1. MilliporeSigma (2017). Renaissance in Immunotherapy in South Korea. Available at: (accessed October 21, 2019).
    1. Min J.-Y., Sullivan M. F., Yang Y., Zhang J.-P., Converso K. L., Morgan J. P., et al. (2002). Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann. Thorac. Surg. 74 1568–1575. 10.1016/s0003-4975(02)03952-8
    1. Mohyeldin A., Garzón-Muvdi T., Quiñones-Hinojosa A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7 150–161. 10.1016/j.stem.2010.07.007
    1. Murphy J. M., Dixon K., Beck S., Fabian D., Feldman A., Barry F. (2002). Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthrit. Rheum. 46 704–713. 10.1002/art.10118
    1. Nakamura K., Ito Y., Kawano Y., Kurozumi K., Kobune M., Tsuda H., et al. (2004). Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 11 1155–1164. 10.1038/sj.gt.3302276
    1. Nayereh K. G., Khadem G. (2012). Preventive and therapeutic vaccines against human papillomaviruses associated cervical cancers. Iran J. Basic Med. Sci. 15 585–601.
    1. Németh K., Leelahavanichkul A., Yuen P. S. T., Mayer B., Parmelee A., Doi K., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15 42–49. 10.1038/nm.1905
    1. Nicolette C. A., Healey D., Tcherepanova I., Whelton P., Monesmith T., Coombs L., et al. (2007). Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products. Vaccine 25 B47–B60. 10.1016/j.vaccine.2007.06.006
    1. Niess H., von Einem J. C., Thomas M. N., Michl M., Angele M. K., Huss R., et al. (2015). Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer 15:237. 10.1186/s12885-015-1241-x
    1. NIH (2019). . Available at: (accessed September 15, 2019).
    1. Ohgushi H., Kotobuki N., Funaoka H., Machida H., Hirose M., Tanaka Y., et al. (2005). Tissue engineered ceramic artificial joint–ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 26 4654–4661. 10.1016/j.biomaterials.2004.11.055
    1. Orthocell (2017). Ortho-ACITM Consumer Medicines Information. Available at: (accessed September 15, 2019).
    1. Otsu K., Das S., Houser S. D., Quadri S. K., Bhattacharya S., Bhattacharya J. (2009). Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 113 4197–4205. 10.1182/blood-2008-09-176198
    1. Ott P. A., Hu Z., Keskin D. B., Shukla S. A., Sun J., Bozym D. J., et al. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547 217–221. 10.1038/nature22991
    1. Ouyang H. W., Goh J. C. H., Thambyah A., Teoh S. H., Lee E. H. (2003). Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng. 9 431–439. 10.1089/107632703322066615
    1. Palucka K., Banchereau J. (2013). Dendritic-cell-based therapeutic cancer vaccines. Immunity 39 38–48. 10.1016/j.immuni.2013.07.004
    1. Panés J., García-Olmo D., Van Assche G., Colombel J. F., Reinisch W., Baumgart D. C., et al. (2016). Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet 388 1281–1290. 10.1016/S0140-6736(16)31203-X
    1. Panés J., García-Olmo D., Van Assche G., Colombel J. F., Reinisch W., Baumgart D. C., et al. (2018). Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s Disease. Gastroenterology 154 1334.e–1342.e. 10.1053/j.gastro.2017.12.020
    1. Panes J., Garcia-Olmo D., Van Assche G. A., Colombel J. F., Reinisch W., Baumgart D. C., et al. (2017). CX601, allogeneic expanded adipose-derived mesenchymal stem cells (EASC), for complex perianal fistulas in crohn’s disease: long-term results from a phase iii randomized controlled trial. Gastroenterology 15:S187 10.1016/s0016-5085(17)30934-4
    1. Patel S. A., Meyer J. R., Greco S. J., Corcoran K. E., Bryan M., Rameshwar P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol. 184 5885–5894. 10.4049/jimmunol.0903143
    1. Pavlova G., Lopatina T., Kalinina N., Rybalkina E., Parfyonova Y., Tkachuk V., et al. (2012). In vitro neuronal induction of adipose-derived stem cells and their fate after transplantation into injured mouse brain. Curr. Med. Chem. 19 5170–5177. 10.2174/092986712803530557
    1. Peng L., Xie D., Lin B.-L., Liu J., Zhu H., Xie C., et al. (2011). Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology 54 820–828. 10.1002/hep.24434
    1. Penn M. S., Khalil M. K. (2008). Exploitation of stem cell homing for gene delivery. Expert. Opin. Biol. Ther. 8 17–30. 10.1517/14712598.8.1.17
    1. Pessina A., Bonomi A., Coccè V., Invernici G., Navone S., Cavicchini L., et al. (2011). Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 6:e28321. 10.1371/journal.pone.0028321
    1. Peters B. A., Diaz L. A., Polyak K., Meszler L., Romans K., Guinan E. C., et al. (2005). Contribution of bone marrow–derived endothelial cells to human tumor vasculature. Nat. Med. 11 261–262. 10.1038/nm1200
    1. PHARMICELL, (2011). Cellgram®-AMI. Available at: (accessed September 15, 2019).
    1. Phillips R. J., Burdick M. D., Lutz M., Belperio J. A., Keane M. P., Strieter R. M. (2003). The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med. 167 1676–1686. 10.1164/rccm.200301-071OC
    1. Phinney D. G., Pittenger M. F. (2017). Concise review: msc-derived exosomes for cell-free therapy. Stem Cells 35 851–858. 10.1002/stem.2575
    1. Polchert D., Sobinsky J., Douglas G., Kidd M., Moadsiri A., Reina E., et al. (2008). IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur. J. Immunol. 38 1745–1755. 10.1002/eji.200738129
    1. Poncelet A. J., Vercruysse J., Saliez A., Gianello P. (2007). Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 2017:9824698. 10.1097/01.tp.0000258649.23081.a3
    1. Prockop D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276 71–74. 10.1126/science.276.5309.71
    1. Prockop D. J., Kota D. J., Bazhanov N., Reger R. L. (2010). Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J. Cell. Mol. Med. 14 2190–2199. 10.1111/j.1582-4934.2010.01151.x
    1. Qiao L., Xu Z., Zhao T., Ye L., Zhang X. (2008). Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 269 67–77. 10.1016/J.CANLET.2008.04.032
    1. Rafei M., Campeau P. M., Aguilar-Mahecha A., Buchanan M., Williams P., Birman E., et al. (2009). Mesenchymal Stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting cd4 th17 t cells in a cc chemokine ligand 2-dependent manner. J. Immunol. 182 5994–6002. 10.4049/jimmunol.0803962
    1. Rafei M., Hsieh J., Fortier S., Li M., Yuan S., Birman E., et al. (2008). Mesenchymal stromal cell–derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112 4991–4998. 10.1182/blood-2008-07-166892
    1. Rasmusson I., Le Blanc K., Sundberg B., Ringdén O. (2007). Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J. Immunol. 65 336–343. 10.1111/j.1365-3083.2007.01905.x
    1. Rasulov M. F., Vasil’chenkov A. V., Onishchenko N. A., Krasheninnikov M. E., Kravchenko V. I., Gorshenin T. L., et al. (2005). First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull. Exp. Biol. Med. 139 141–144. 10.1007/s10517-005-0232-3
    1. Reagan M. R., Kaplan D. L. (2011). Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells 29 920–927. 10.1002/stem.645
    1. Redondo L. M., García V., Peral B., Verrier A., Becerra J., Sánchez A., et al. (2018). Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J. Craniomaxillofacial Surg. 46 222–229. 10.1016/j.jcms.2017.11.004
    1. Regrow Biosciences® (2019). OSSGROWTM for Avascular Necrosis. Available at: (accessed February 3, 2020).
    1. Ren C., Kumar S., Chanda D., Chen J., Mountz J. D., Ponnazhagan S. (2008a). Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells 26 2332–2338. 10.1634/stemcells.2008-0084
    1. Ren C., Kumar S., Chanda D., Kallman L., Chen J., Mountz J. D., et al. (2008b). Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther. 15 1446–1453. 10.1038/gt.2008.101
    1. Renner P., Eggenhofer E., Rosenauer A., Popp F. C., Steinmann J. F., Slowik P., et al. (2009). Mesenchymal stem cells require a sufficient, ongoing immune response to exert their immunosuppressive function. Transplant. Proc. 41 2607–2611. 10.1016/j.transproceed.2009.06.119
    1. Reza A. M. M. T., Choi Y.-J., Yasuda H., Kim J.-H. (2016). Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci. Rep. 6:38498. 10.1038/srep38498
    1. Rigo A., Gottardi M., Zamò A., Mauri P., Bonifacio M., Krampera M., et al. (2010). Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol. Cancer 9:273. 10.1186/1476-4598-9-273
    1. Rivera-Cruz C. M., Shearer J. J., Neto F., Figueiredo M. L. (2017). The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int. 2017:4015039. 10.1155/2017/4015039
    1. Robson N. C., Hoves S., Maraskovsky E., Schnurr M. (2010). Presentation of tumour antigens by dendritic cells and challenges faced. Curr. Opin. Immunol. 22 137–144. 10.1016/j.coi.2010.01.002
    1. Roccaro A. M., Sacco A., Maiso P., Azab A. K., Tai Y.-T., Reagan M., et al. (2013). BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123 1542–1555. 10.1172/JCI66517
    1. Roddy G. W., Oh J. Y., Lee R. H., Bartosh T. J., Ylostalo J., Coble K., et al. (2011). Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 29 1572–1579. 10.1002/stem.708
    1. Romieu-Mourez R., François M., Boivin M.-N., Bouchentouf M., Spaner D. E., Galipeau J. (2009). Cytokine modulation of TLR expression and activation in Mesenchymal stromal cells leads to a proinflammatory phenotype. J. Immunol. 182 7963–7973. 10.4049/jimmunol.0803864
    1. Russell A. L., Lefavor R., Durand N., Glover L., Zubair A. C. (2018). Modifiers of mesenchymal stem cell quantity and quality. Transfusion 58 1434–1440. 10.1111/trf.14597
    1. Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. 180 2581–2587. 10.4049/jimmunol.180.4.2581
    1. Schumacher T. N., Schreiber R. D. (2015). Neoantigens in cancer immunotherapy. Science 348 69–74. 10.1126/science.aaa4971
    1. Schweizer M. T., Wang H., Bivalacqua T. J., Partin A. W., Lim S. J., Chapman C., et al. (2019). A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived Mesenchymal stem cells in men with localized prostate cancer. Stem Cells Transl. Med. 8 441–449. 10.1002/sctm.18-0230
    1. Secchiero P., Zorzet S., Tripodo C., Corallini F., Melloni E., Caruso L., et al. (2010). Human bone marrow Mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-hodgkin’s lymphoma xenografts. PLoS One 5:e11140. 10.1371/journal.pone.0011140
    1. Sekiya I., Larson B. L., Smith J. R., Pochampally R., Cui J., Prockop D. J. (2002). Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20 530–541. 10.1634/stemcells.20-6-530
    1. Sensebé L. (2008). Clinical grade production of mesenchymal stem cells. Biomed. Mater. Eng. 18 S3–S10.
    1. Seo S. H., Kim K. S., Park S. H., Suh Y. S., Kim S. J., Jeun S.-S., et al. (2011). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther. 18 488–495. 10.1038/gt.2010.170
    1. Serakinci N., Cagsin H. (2019). Turning stem cells homing potential into cancer specific drug delivery machines. Stem Cells Transl. Med. 7 441–450. 10.21037/atm.2019.06.30
    1. Sheng G. (2015). The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev. Biol. 15:44. 10.1186/s12861-015-0094-5
    1. Sheng H., Wang Y., Jin Y., Zhang Q., Zhang Y., Wang L., et al. (2008). A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 18 846–857. 10.1038/cr.2008.80
    1. Shi M., Li J., Liao L., Chen B., Li B., Chen L., et al. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92 897–904. 10.3324/haematol.10669
    1. Siegel G., Schäfer R., Dazzi F. (2009). The immunosuppressive properties of Mesenchymal stem cells. Transplantation 87 S45–S49. 10.1097/TP.0b013e3181a285b0
    1. Singer N. G., Caplan A. I. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. Mech. Dis. 6 457–478. 10.1146/annurev-pathol-011110-130230
    1. Singh A., Singh A., Sen D. (2016). Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res. Ther. 7:82. 10.1186/s13287-016-0341-0
    1. Sipp D. (2015). Conditional approval: japan lowers the bar for regenerative medicine products. Cell Stem Cell 16 353–356. 10.1016/j.stem.2015.03.013
    1. Small E. J., Schellhammer P. F., Higano C. S., Redfern C. H., Nemunaitis J. J., Valone F. H., et al. (2006). Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24 3089–3094. 10.1200/JCO.2005.04.5252
    1. Socié G., Ritz J. (2014). Current issues in chronic graft-versus-host disease. Blood 124 374–384. 10.1182/blood-2014-01-514752
    1. Solchaga L. A., Penick K., Porter J. D., Goldberg V. M., Caplan A. I., Welter J. F. (2005). FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell Physiol. 203 398–409. 10.1002/jcp.20238
    1. Sotiropoulou P. A., Perez S. A., Gritzapis A. D., Baxevanis C. N., Papamichail M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24 74–85. 10.1634/stemcells.2004-0359
    1. Spaggiari G. M., Moretta L. (2012). “Mesenchymal stem cell-natural killer cell interactions,” in Stem Cells and Cancer Stem Cells, Volume 4: Therapeutic Applications in Disease and Injury, ed. Hayat M. A. (Berlin: Springer; ), 217–224. 10.1007/978-94-007-2828-8-19
    1. Squillaro T., Peluso G., Galderisi U. (2016). Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25 829–848. 10.3727/096368915X689622
    1. Stagg J., Galipeau J. (2013). Mechanisms of immune modulation by Mesenchymal stromal cells and clinical translation. Curr. Mol. Med. 13 856–867. 10.2174/1566524011313050016
    1. Stagg J., Pommey S., Eliopoulos N., Galipeau J. (2006). Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cells. Blood 107 2570–2577. 10.1182/blood-2005-07-2793
    1. Steinman R. M. (2001). Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J. Med. 68 160–166.
    1. Strioga M., Viswanathan S., Darinskas A., Slaby O., Michalek J. (2012). Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 21 2724–2752. 10.1089/scd.2011.0722
    1. Studeny M., Marini F. C., Champlin R. E., Zompetta C., Fidler I. J., Andreeff M. (2002). Bone marrow-derived Mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62 3603–3608.
    1. Sudres M., Norol F., Trenado A., Grégoire S., Charlotte F., Levacher B., et al. (2006). Bone marrow Mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J. Immunol. 176 7761–7767. 10.4049/jimmunol.176.12.7761
    1. Takahashi N., Udagawa N., Suda T. (1999). A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256 449–455. 10.1006/BBRC.1999.0252
    1. Tappenbeck N., Schröder H. M., Niebergall-Roth E., Hassinger F., Dehio U., Dieter K., et al. (2019). In vivo safety profile and biodistribution of GMP-manufactured human skin-derived ABCB5-positive mesenchymal stromal cells for use in clinical trials. Cytotherapy 21 546–560. 10.1016/j.jcyt.2018.12.005
    1. Tisato V., Naresh K., Girdlestone J., Navarrete C., Dazzi F. (2007). Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia 21 1992–1999. 10.1038/sj.leu.2404847
    1. Togel F., Hu Z., Weiss K., Isaac J., Lange C., Westenfelder C. (2005). Amelioration of acute renal failure by stem cell therapy–paracrine secretion Versus transdifferentiation into resident cells. J. Am. Soc. Nephrol. 16 1153–1163. 10.1681/ASN.2005030294
    1. Tögel F., Hu Z., Weiss K., Isaac J., Lange C., Westenfelder C. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am. J. Physiol. Physiol. 289 F31–F42. 10.1152/ajprenal.00007.2005
    1. Tomchuck S. L., Norton E. B., Garry R. F., Bunnell B. A., Morris C. A., Freytag L. C., et al. (2012). Mesenchymal stem cells as a novel vaccine platform. Front. Cell Infect. Microbiol. 2:140. 10.3389/fcimb.2012.00140
    1. Tomchuck S. L., Zwezdaryk K. J., Coffelt S. B., Waterman R. S., Danka E. S., Scandurro A. B. (2008). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26 99–107. 10.1634/stemcells.2007-0563
    1. Tontonoz P., Hu E., Spiegelman B. M. (1994). Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79 1147–1156. 10.1016/0092-8674(94)90006-X
    1. Tsai P.-J., Yeh C.-C., Huang W.-J., Min M.-Y., Huang T.-H., Ko T.-L., et al. (2019). Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1. Transl. Neurodegener. 8:29. 10.1186/s40035-019-0166-8
    1. U. S. National Library of Medicine (2019). Mesenchymal Stem Cells: . Bethesda, MD: U. S. National Library of Medicine.
    1. Uchibori R., Okada T., Ito T., Urabe M., Mizukami H., Kume A., et al. (2009). Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J. Gene Med. 11 373–381. 10.1002/jgm.1313
    1. Ullah I., Subbarao R. B., Rho G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 35:e00191. 10.1042/BSR20150025
    1. Van Der Wagen L., Te Boome L., Mansilla C., Lindemans C., Cuijpers M., Westinga K., et al. (2014). Treatment of steroid resistant grade II to IV acute GVHD by infusion of mesenchymal stromal cells expanded with platelet lysate-a phase I/II study. Cytotherapy 16:S13. 10.1016/j.jcyt.2014.01.032
    1. van Megen K. M., van’t Wout E.-J. T., Lages Motta J., Dekker B., Nikolic T., Roep B. O. (2019). Activated mesenchymal stromal cells process and present antigens regulating adaptive immunity. Front. Immunol. 10:694. 10.3389/fimmu.2019.00694
    1. Von Ahrens D., Bhagat T. D., Nagrath D., Maitra A., Verma A. (2017). The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10:76. 10.1186/s13045-017-0448-5
    1. Vonk L. A., van Dooremalen S. F. J., Liv N., Klumperman J., Coffer P. J., Saris D. B. F., et al. (2018). Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 8 906–920. 10.7150/thno.20746
    1. Wang T., Sun S., Wan Z., Weil M. H., Tang W. (2012). Effects of bone marrow mesenchymal stem cells in a rat model of myocardial infarction. Resuscitation 83 1391–1396. 10.1016/J.RESUSCITATION.2012.02.033
    1. Waterman R. S., Tomchuck S. L., Henkle S. L., Betancourt A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory msc1 or an immunosuppressive MSC2 phenotype. PLoS One 5:e10088. 10.1371/journal.pone.0010088
    1. Wei H.-J. J., Wu A. T., Hsu C.-H. H., Lin Y.-P. P., Cheng W.-F. F., Su C.-H. H., et al. (2011). The development of a novel cancer immunotherapeutic platform using tumor-targeting mesenchymal stem cells and a protein vaccine. Mol. Ther. 19 2249–2257. 10.1038/mt.2011.152
    1. Wei X., Yang X., Han Z., Qu F., Shao L., Shi Y. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol. Sin. 34 747–754. 10.1038/aps.2013.50
    1. Wei X. X., Fong L., Small E. J. (2015). Prostate cancer immunotherapy with sipuleucel-t: current standards and future directions. Expert. Rev. Vaccines 14 1529–1541. 10.1586/14760584.2015.1099437
    1. Wraith D. C. (2017). The future of immunotherapy: a 20-year perspective. Front. Immunol. 8:1668. 10.3389/fimmu.2017.01668
    1. Wu M., Zhang R., Zou Q., Chen Y., Zhou M., Li X., et al. (2018). Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci. Rep. 8:5014. 10.1038/s41598-018-23396-1
    1. Wu Y., Chen L., Scott P. G., Tredget E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25 2648–2659. 10.1634/stemcells.2007-0226
    1. Xin H., Sun R., Kanehira M., Takahata T., Itoh J., Mizuguchi H., et al. (2009). Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol. Med. 15 321–327. 10.2119/molmed.2009.00059
    1. Xu G., Zhang Y., Zhang L., Ren G., Shi Y. (2007). The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem. Biophys. Res. Commun. 361 745–750. 10.1016/j.bbrc.2007.07.052
    1. Yamada Y., Ueda M., Hibi H., Baba S. (2006). A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int. J. Periodontics Restorative Dent. 26 363–369.
    1. Yorukoglu A. C., Kiter A. E., Akkaya S., Satiroglu-Tufan N. L., Tufan A. C. (2017). A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017 1–13. 10.1155/2017/2374161
    1. Yu T. T. L., Gupta P., Ronfard V., Vertès A. A., Bayon Y. (2018). Recent progress in European advanced therapy medicinal products and beyond. Front. Bioeng. Biotechnol. 6:130. 10.3389/fbioe.2018.00130
    1. Zeng X., Zeng Y.-S., Ma Y.-H., Lu L.-Y., Du B.-L., Zhang W., et al. (2011). Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant. 20 1881–1899. 10.3727/096368911X566181
    1. Zhang T., Lee Y., Rui Y., Cheng T., Jiang X., Li G. (2013). Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res. Ther. 4:70. 10.1186/scrt221
    1. Zhang Y., Ma L., Su Y., Su L., Lan X., Wu D., et al. (2019). Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res. 1725:14632. 10.1016/j.brainres.2019.146432
    1. Zhu Y., Sun Z., Han Q., Liao L., Wang J., Bian C., et al. (2009). Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23 925–933. 10.1038/leu.2008.384

Source: PubMed

3
Se inscrever