Maslinic acid, a natural phytoalexin-type triterpene from olives--a promising nutraceutical?

Glòria Lozano-Mena, Marta Sánchez-González, M Emília Juan, Joana M Planas, Glòria Lozano-Mena, Marta Sánchez-González, M Emília Juan, Joana M Planas

Abstract

Maslinic acid is a pentacyclic triterpene found in a variety of natural sources, ranging from herbal remedies used in traditional Asian medicine to edible vegetables and fruits present in the Mediterranean diet. In recent years, several studies have proved that maslinic acid exerts a wide range of biological activities, i.e. antitumor, antidiabetic, antioxidant, cardioprotective, neuroprotective, antiparasitic and growth-stimulating. Experimental models used for the assessment of maslinic acid effects include established cell lines, which have been often used to elucidate the underlying mechanisms of action, and also animal models of different disorders, which have confirmed the effects of the triterpene in vivo. Overall, and supported by the lack of adverse effects in mice, the results provide evidence of the potential of maslinic acid as a nutraceutical, not only for health promotion, but also as a therapeutic adjuvant in the treatment of several disorders.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structure of maslinic acid.

References

    1. Sánchez-González M., Lozano-Mena G., Juan M.E., García-Granados A., Planas J.M. Assessment of the safety of maslinic acid, a bioactive compound from Olea europaea L. Mol. Nutr. Food Res. 2013;57:339–346. doi: 10.1002/mnfr.201200481.
    1. Bächler L. Chemische Untersuchungen über die Früchte von Crataegus oxyacantha L. (Monographie der Mehlbeeren) Universität Basel; Basel, Switzerland: 1927.
    1. Tschesche R., Fugmann R. Crataegolsäure, ein neues triterpenoid aus Crataegus oxyacantha. Ein beitrag zur konstitution der α-amyrine. Chem. Ber. 1951;84:810–826.
    1. Tschesche R., Heesch A., Fugmann R. Über triterpenoide, III. Mitteil.: Zur kenntnis der crataegolsäure. Chem. Ber. 1953;86:626–629.
    1. Caglioti L., Cainelli G., Minutilli F. Constitution of maslinic acid. Chim. Ind. 1961;43:278.
    1. Caputo R., Mangoni L., Monaco P., Previtera L. Triterpenes in husks of Olea europaea. Phytochemistry. 1974;13:1551–1552. doi: 10.1016/0031-9422(74)80325-0.
    1. Vioque A., Morris L. Minor components of olive oils. I. Triterpenoid acids in an acetone-extracted orujo oil. J. Am. Oil Chem. Soc. 1961;38:458–488.
    1. Bianchi G., Pozzi N., Vlahov G. Pentacyclic triterpene acids in olives. Phytochemistry. 1994;37:205–207. doi: 10.1016/0031-9422(94)85026-7.
    1. Xu R., Fazio G.C., Matsuda S.P.T. On the origins of triterpenoid skeletal diversity. Phytochemistry. 2004;65:261–291. doi: 10.1016/j.phytochem.2003.11.014.
    1. Tschesche R., Poppel G., Über Triterpene V. Zur Kenntnis der crataegolsäure und über zwei neue triterpencarbonsäuren aus Crataegus oxyacantha L. Chem. Ber. 1959;92:320–328. doi: 10.1002/cber.19590920212.
    1. Stiti N., Triki S., Hartmann M.A. Formation of triterpenoids throughout Olea europaea fruit ontogeny. Lipids. 2007;42:55–67. doi: 10.1007/s11745-006-3002-8.
    1. Kombargi W.S., Michelakis S.E., Petrakis C.A. Effect of olive surface waxes on oviposition by Bactrocera oleae (Diptera: Tephritidae) J. Econ. Entomol. 1998;91:993–998.
    1. Pungitore C.R., García M., Gianello J.C., Sosa M.E., Tonn C.E. Insecticidal and antifeedant effects of Junellia aspera (Verbenaceae) triterpenes and derivatives on Sitophilus oryzae (Coleoptera: Curculionidae) J. Stored Prod. Res. 2005;41:433–443. doi: 10.1016/j.jspr.2004.07.001.
    1. Lu H., Xi C., Chen J., Li W. Determination of triterpenoid acids in leaves of Eriobotrya japonica collected at in different seasons. Zhongguo Zhong Yao Za Zhi. 2009;34:2353–2355.
    1. Banno N., Akihisa T., Tokuda H., Yasukawa K., Taguchi Y., Akazawa H., Ukiya M., Kimura Y., Suzuki T., Nishino H. Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica. Biol. Pharm. Bull. 2005;28:1995–1999. doi: 10.1248/bpb.28.1995.
    1. Kim D.H., Han K.M., Chung I.S., Kim D.K., Kim S.H., Kwon B.M., Jeong T.S., Park M.H., Ahn E.M., Baek N.I. Triterpenoids from the flower of Campsis grandiflora K. Schum. as human acyl-CoA: Cholesterol acyltransferase inhibitors. Arch. Pharm. Res. 2005;28:550–556. doi: 10.1007/BF02977757.
    1. Xu H.X., Zeng F.Q., Wan M., Sim K.Y. Anti-HIV triterpene acids from Geum japonicum. J. Nat. Prod. 1996;59:643–645.
    1. Yoshida T., Okuda T., Memon M.U., Shingu T. Tannins of rosaceous medicinal plants. Part 2. Gemins A, B, and C, new dimeric ellagitannins from Geum japonicum. J. Chem. Soc. Perkin Trans. 1985;1:315–321.
    1. Zou Z.M., Cong P.Z. Studies on the chemical constituents from roots of Agastache rugosa. Yao Xue Xue Bao. 1991;26:906–910.
    1. Shin S., Kang C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003;36:111–115. doi: 10.1046/j.1472-765X.2003.01271.x.
    1. Romero C., García A., Medina E., Ruiz-Méndez M.V., de Castro A., Brenes M. Triterpenic acids in table olives. Food Chem. 2010;118:670–674. doi: 10.1016/j.foodchem.2009.05.037.
    1. Lin C.C., Huang C.Y., Mong M.C., Chan C.Y., Yin M.C. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J. Agric. Food Chem. 2011;59:755–762.
    1. Yin M.C., Lin M.C., Mong M.C., Lin C.Y. Bioavailability, distribution, and antioxidative effects of selected triterpenes in mice. J. Agric. Food Chem. 2012;60:7697–7701.
    1. Kalogeropoulos N., Chiou A., Ioannou M., Karathanos V.T., Hassapidou M., Andrikopoulos N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010;121:682–690. doi: 10.1016/j.foodchem.2010.01.005.
    1. Li G.L., You J.M., Song C.H., Xia L., Zheng J., Suo Y.R. Development of a new HPLC method with precolumn fluorescent derivatization for rapid, selective and sensitive detection of triterpenic acids in fruits. J. Agric. Food Chem. 2011;59:2972–2979. doi: 10.1021/jf104224t.
    1. Juan M.E., Wenzel U., Ruiz-Gutiérrez V., Planas J.M., Daniel H. Maslinic acid, a natural compound from olives, induces apoptosis in HT-29 human colon cancer cell line; Proceedings of the Experimental Biology 2005 Meeting, 35th International Congress of Physiological Sciences; San Diego, CA, USA. 31 March–6 April 2005.
    1. Juan M.E., Planas J.M., Ruiz-Gutiérrez V., Daniel H., Wenzel U. Anti-proliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. Br. J. Nutr. 2008;100:36–43.
    1. Reyes F.J., Centelles J.J., Lupiáñez J.A., Cascante M. (2α,3β)-2,3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett. 2006;580:6302–6310. doi: 10.1016/j.febslet.2006.10.038.
    1. Hengartner M.O. The biochemistry of apoptosis. Nature. 2000;407:770–776. doi: 10.1038/35037710.
    1. Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913–922. doi: 10.1007/s10495-007-0756-2.
    1. Reyes-Zurita F.J., Rufino-Palomares E.E., Lupiáñez J.A., Cascante M. Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Lett. 2009;273:44–54. doi: 10.1016/j.canlet.2008.07.033.
    1. Li P., Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–489. doi: 10.1016/S0092-8674(00)80434-1.
    1. Reyes-Zurita F.J., Pachón-Peña G., Lizárraga D., Rufino-Palomares E.E., Cascante M., Lupiáñez J.A. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer. 2011:154:1–154:13.
    1. Tsuruta F., Sunayama J., Mori Y., Hattori S., Shimizu S., Tsujimoto Y., Yoshioka K., Masuyama N., Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004;23:1889–1899. doi: 10.1038/sj.emboj.7600194.
    1. Deng Y., Ren X., Yang L., Lin Y., Wu X. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell. 2003;115:61–70. doi: 10.1016/S0092-8674(03)00757-8.
    1. Wilkinson J.C., Wilkinson A.S., Scott F.L., Csomos R.A., Salvesen G.S., Duckett C.S. Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs). A caspase-independent mechanism for apoptotic inhibition. J. Biol. Chem. 2004;279:51082–51090.
    1. Miyashita T., Krajewski S., Krajewska M., Wang H.G., Lin H.K., Liebermann D.A., Hoffman B., Reed J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9:1799–1805.
    1. Micheau O., Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–190. doi: 10.1016/S0092-8674(03)00521-X.
    1. Napetschnig J., Wu H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 2013;42:443–468. doi: 10.1146/annurev-biophys-083012-130338.
    1. Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441:431–436. doi: 10.1038/nature04870.
    1. Stennicke H.R., Jürgensmeier J.M., Shin H., Deveraux Q., Wolf B.B., Yang X., Zhou Q., Ellerby H.M., Ellerby L.M., Bredesen D., et al. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 1998;273:27084–27090. doi: 10.1074/jbc.273.42.27084.
    1. Li C., Yang Z., Zhai C., Qiu W., Li D., Yi Z., Wang L., Tang J., Qian M., Luo J., et al. Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor α by inhibiting NF-κB signaling pathway. Mol. Cancer. 2010:73:1–73:13.
    1. Hsum Y.W., Yew W.T., Hong P.L., Soo K.K., Hoon L.S., Chieng Y.C., Mooi L.Y. Cancer chemopreventive activity of maslinic acid: Suppression of COX-2 expression and inhibition of NF-κB and AP-1 activation in Raji cells. Planta Med. 2011;77:152–157. doi: 10.1055/s-0030-1250203.
    1. Dannenberg A.J., Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise. Cancer Cell. 2003;4:431–436. doi: 10.1016/S1535-6108(03)00310-6.
    1. Schulze-Osthoff K., Ferrari D., Riehemann K., Wesselborg S. Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology. 1997;198:35–49. doi: 10.1016/S0171-2985(97)80025-3.
    1. Wu D.M., Zhao D., Li D.Z., Xu D.Y., Chu W.F., Wang X.F. Maslinic acid induces apoptosis in salivary gland adenoid cystic carcinoma cells by Ca2+-evoked p38 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2011;383:321–330. doi: 10.1007/s00210-011-0598-x.
    1. Zhang S., Ding D., Zhang X., Shan L., Liu Z. Maslinic acid induced apoptosis in bladder cancer cells through activating p38 MAPK signaling pathway. Mol. Cell Biochem. 2014;392:281–287. doi: 10.1007/s11010-014-2038-y.
    1. Villar V.H., Vögler O., Barceló F., Gómez-Florit M., Martínez-Serra J., Obrador-Hevia A., Martín-Broto J., Ruiz-Gutiérrez V., Alemany R. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein. J. Nutr. Biochem. 2014;25:429–438. doi: 10.1016/j.jnutbio.2013.12.003.
    1. He X., Liu R.H. Triterpenoids isolated from apple peels have potent anti-proliferative activity and may be partially responsible for apple’s anticancer activity. J. Agric. Food Chem. 2007;55:4366–4370. doi: 10.1021/jf063563o.
    1. Zhong H., de Marzo A.M., Laughner E., Lim M., Hilton D.A., Zagzag D., Buechler P., Isaacs W.B., Semenza G.L., Simons J.W. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 1999;59:5830–5835.
    1. Rankin E.B., Giaccia A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15:678–685. doi: 10.1038/cdd.2008.21.
    1. Bourboulia D., Stetler-Stevenson W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol. 2010;20:161–168. doi: 10.1016/j.semcancer.2010.05.002.
    1. Mekkawy A.H., Morris D.L., Pourgholami M.H. Urokinase plasminogen activator system as a potential target for cancer therapy. Future Oncol. 2009;5:1487–1499. doi: 10.2217/fon.09.108.
    1. Park S.Y., Nho C.W., Kwon D.Y., Kang Y.H., Lee K.W., Park J.H. Maslinic acid inhibits the metastatic capacity of DU145 human prostate cancer cells: Possible mediation via hypoxia-inducible factor-1α signalling. Br. J. Nutr. 2013;109:210–222. doi: 10.1017/S0007114512000967.
    1. Pialoux V., Mounier R., Brown A.D., Steinback C.D., Rawling J.M., Poulin M.J. Relationship between oxidative stress and HIF-1α mRNA during sustained hypoxia in humans. Free Radic. Biol. Med. 2009;46:321–326. doi: 10.1016/j.freeradbiomed.2008.10.047.
    1. Sánchez-Tena S., Reyes-Zurita F.J., Díaz-Moralli S., Vinardell M.P., Reed M., García-García F., Dopazo J., Lupiáñez J.A., Günther U., Cascante M. Maslinic acid-enriched diet decreases intestinal tumorigenesis in ApcMin/+ mice through transcriptomic and metabolomic reprogramming. PLoS One. 2013;8:e59392.
    1. Wen X., Sun H., Liu J., Wu G., Zhang L., Wu X., Ni P. Pentacyclic triterpenes. Part 1: The first examples of naturally occurring pentacyclic triterpenes as a new class of inhibitors of glycogen phosphorylases. Bioorg. Med. Chem. Lett. 2005;15:4944–4948. doi: 10.1016/j.bmcl.2005.08.026.
    1. Wen X., Sun H., Liu J., Cheng K., Zhang P., Zhang L., Hao J., Zhang L., Ni P., Zographos S.E., et al. Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: Synthesis, structure-activity relationships, and X-ray crystallographic studies. J. Med. Chem. 2008;51:3540–3554. doi: 10.1021/jm8000949.
    1. Liu J., Sun H., Duan W., Mu D., Zhang L. Maslinic acid reduces blood glucose in KK-Ay mice. Biol. Pharm. Bull. 2007;30:2075–2078. doi: 10.1248/bpb.30.2075.
    1. Khathi A., Serumula M.R., Myburg R.B., van Heerden F.R., Musabayane C.T. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS One. 2013;8:e81632.
    1. Guan T., Qian Y., Tang X., Huang M., Huang L., Li Y., Sun H. Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycemic rats by GLT-1 up-regulation. J. Neurosci. Res. 2011;89:1829–1839. doi: 10.1002/jnr.22671.
    1. Liu J., Wang X., Chen Y.P., Mao L.F., Shang J., Sun H.B., Zhang L.Y. Maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase. Chin. J. Nat. Med. 2014;12:259–265.
    1. Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806. doi: 10.1038/414799a.
    1. Montilla M.P., Agil A., Navarro M.C., Jiménez M.I., García-Granados A., Parra A., Cabo M.M. Antioxidant activity of maslinic acid, a triterpene derivative obtained from Olea europaea. Planta Med. 2003;69:472–474. doi: 10.1055/s-2003-39698.
    1. Wang R., Wang W., Wang L., Liu R., Ding Y., Du L. Constituents of the flowers of Punica granatum. Fitoterapia. 2006;77:534–537. doi: 10.1016/j.fitote.2006.06.011.
    1. Allouche Y., Beltrán G., Gaforio J.J., Uceda M., Mesa M.D. Antioxidant and antiatherogenic activities of pentacyclic triterpenic diols and acids. Food Chem. Toxicol. 2010;48:2885–2890.
    1. Márquez-Martín A., de la Puerta R., Fernández-Arche A., Ruiz-Gutiérrez V., Yaqoob P. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine. 2006;36:211–217. doi: 10.1016/j.cyto.2006.12.007.
    1. Huang L., Guan T., Qian Y., Huang M., Tang X., Li Y., Sun H. Anti-inflammatory effects of maslinic acid, a natural triterpene, in cultured cortical astrocytes via suppression of nuclear factor-kappa B. Eur. J. Pharmacol. 2011;672:169–174. doi: 10.1016/j.ejphar.2011.09.175.
    1. Rodríguez-Rodríguez R., Perona J.S., Herrera M.D., Ruiz-Gutiérrez V. Triterpenic compounds from “orujo” olive oil elicit vasorelaxation in aorta from spontaneously hypertensive rats. J. Agric. Food Chem. 2006;54:2096–2102. doi: 10.1021/jf0528512.
    1. Liu J., Sun H., Wang X., Mu D., Liao H., Zhang L. Effects of oleanolic acid and maslinic acid on hyperlipidemia. Drug Dev. Res. 2007;68:261–266. doi: 10.1002/ddr.20187.
    1. Hussain Shaik A., Rasool S.N., Abdul Kareem M., Krushna G.S., Akhtar P.M., Devi K.L. Maslinic acid protects against isoproterenol-induced cardiotoxicity in albino Wistar rats. J. Med. Food. 2012;15:741–746. doi: 10.1089/jmf.2012.2191.
    1. Mackness M., Mackness B. Targeting paraoxonase-1 in atherosclerosis. Expert Opin. Ther. Targets. 2013;17:829–837. doi: 10.1517/14728222.2013.790367.
    1. Ros E., Martínez-González M.A., Estruch R., Salas-Salvadó J., Fitó M., Martínez J.A., Corella D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED Study; Proceedings of the IUNS 20th Congress of Nutrition; Granada, Spain. 15–20 September 2013; pp. 330S–336S.
    1. Qian Y., Guan T., Tang X., Huang L., Huang M., Li Y., Sun H. Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury. Eur. J. Pharmacol. 2011;670:148–153. doi: 10.1016/j.ejphar.2011.07.037.
    1. Moncada S., Erusalimsky J.D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol. 2002;3:214–220. doi: 10.1038/nrm762.
    1. Moro M.A., de Alba J., Leza J.C., Lorenzo P., Fernández A.P., Bentura M.L., Boscá L., Rodrigo J., Lizasoain I. Neuronal expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. Eur. J. Neurosci. 1998;10:445–456. doi: 10.1046/j.1460-9568.1998.00028.x.
    1. Lau A., Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460:525–542. doi: 10.1007/s00424-010-0809-1.
    1. Kanai Y., Hediger M.A. The glutamate/neutral amino acid transporter family SLC1: Molecular, physiological and pharmacological aspects. Pflügers Archiv. 2004;447:469–479. doi: 10.1007/s00424-003-1146-4.
    1. Qian Y., Guan T., Tang X., Huang L., Huang M., Li Y., Sun H., Yu R., Zhang F. Astrocytic glutamate transporter-dependent neuroprotection against glutamate toxicity: An in vitro study of maslinic acid. Eur. J. Pharmacol. 2011;651:59–65. doi: 10.1016/j.ejphar.2010.10.095.
    1. Kagansky N., Levy S., Knobler H. The role of hyperglycemia in acute stroke. Arch. Neurol. 2001;58:1209–1212. doi: 10.1001/archneur.58.8.1209.
    1. Acebey-Castellón I.L., Voutquenne-Nazabadioko L., Mai D.T.H., Roseau N., Bouthagane N., Muhammad D., le Debar M.E., Gangloff S.C., Litaudon M., Sevenet T., et al. Triterpenoid saponins from Symplocos lancifolia. J. Nat. Prod. 2011;74:163–168. doi: 10.1021/np100502y.
    1. De Pablos L.M., González G., Rodrigues R., García-Granados A., Parra A., Osuna A. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. J. Nat. Prod. 2010;73:831–834. doi: 10.1021/np900749b.
    1. De Pablos L.M., dos Santos M.F., Montero E., García-Granados A., Parra A., Osuna A. Anticoccidial activity of maslinic acid against infection with Eimeria tenella in chickens. Parasitol. Res. 2010;107:601–604. doi: 10.1007/s00436-010-1901-3.
    1. Moneriz C., Marín-García P., García-Granados A., Bautista J.M., Diez A., Puyet A. Parasitostatic effect of maslinic acid. I. Growth arrest of Plasmodium falciparum intraerythrocytic stages. Malar. J. 2011:82:1–82:10.
    1. Moneriz C., Marín-García P., Bautista J.M., Diez A., Puyet A. Parasitostatic effect of maslinic acid. II. Survival increase and immune protection in lethal Plasmodium yoelii-infected mice. Malar. J. 2011:103:1–103:9.
    1. Moneriz C., Mestres J., Bautista J.M., Diez A., Puyet A. Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS J. 2011;278:2951–2961. doi: 10.1111/j.1742-4658.2011.08220.x.
    1. Fernández-Navarro M., Peragón J., Esteban F.J., de la Higuera M., Lupiáñez J.A. Maslinic acid as a feed additive to stimulate growth and hepatic protein-turnover rates in rainbow trout (Onchorhynchus mykiss) Comp. Biochem. Physiol. C. 2006;144:130–140.
    1. Fernández-Navarro M., Peragón J., Amores V., de la Higuera M., Lupiáñez J.A. Maslinic acid added to the diet increases growth and protein-turnover rates in the white muscle of rainbow trout (Oncorhynchus mykiss) Comp. Biochem. Physiol. C. 2008;147:158–167.
    1. Rufino-Palomares E., Reyes-Zurita F.J., Fuentes-Almagro C.A., de la Higuera M., Lupiáñez J.A., Peragón J. Proteomics in the liver of gilthead sea bream (Sparus aurata) to elucidate the cellular response induced by the intake of maslinic acid. Proteomics. 2011;11:3312–3325. doi: 10.1002/pmic.201000271.
    1. Sultana N., Lee N.H. Antielastase and free radical scavenging activities of compounds from the stems of Cornus kousa. Phytother Res. 2007;21:1171–1176. doi: 10.1002/ptr.2230.
    1. Ullah F., Hussain H., Hussain J., Bukhari I.A., Khan M.T., Choudhary M.I., Gilani A.H., Ahmad V.U. Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum. Phytother Res. 2007;21:1076–1081. doi: 10.1002/ptr.2216.
    1. Li C., Yang Z., Li Z., Ma Y., Zhang L., Zheng C., Qiu W., Wu X., Wang X., Li H., et al. Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways. J. Bone Miner. Res. 2011;26:644–656. doi: 10.1002/jbmr.242.
    1. Nieto F.R., Cobos E.J., Entrena J.M., Parra A., García-Granados A., Baeyens J.M. Antiallodynic and analgesic effects of maslinic acid, a pentacyclic triterpenoid from Olea europaea. J. Nat. Prod. 2013;76:737–740. doi: 10.1021/np300783a.
    1. Prades J., Vögler O., Alemany R., Gómez-Florit M., Funari S.S., Ruiz-Gutiérrez V., Barceló F. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 2011;1808:752–760. doi: 10.1016/j.bbamem.2010.12.007.

Source: PubMed

3
Se inscrever