Dosimetric comparison between IMRT and VMAT in irradiation for peripheral and central lung cancer

Yi Li, Ji Wang, Li Tan, Beina Hui, Xiaowei Ma, Yanli Yan, Chaofan Xue, Xiaoting Shi, Emmanuel Kwateng Drokow, Juan Ren, Yi Li, Ji Wang, Li Tan, Beina Hui, Xiaowei Ma, Yanli Yan, Chaofan Xue, Xiaoting Shi, Emmanuel Kwateng Drokow, Juan Ren

Abstract

The aim of the present study was to compare intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) in irradiation of lung cancer. Plans of 14 patients were compared. The results demonstrated that in peripheral lung cancer, V5 (%) of the lung in partial-arc (PA)-VMAT was decreased compared with IMRT, single-arc (SA)-, and double partial-arc (2PA)-VMAT. V30 (%) of the lung in IMRT was decreased compared with SA-, PA- and 2PA-VMAT. In the case of planning target volume (PTV) not encompassing the mediastinum in central lung cancer, the conformality index (CI) and heterogeneity index (HI) of SA-VMAT was improved compared with IMRT, PA-, and 2PA-VMAT. The received dose of heart in SA-VMAT was higher compared with IMRT, PA- and 2PA-VMAT. V30 (%) and V5 (%) of the lung in IMRT was higher compared with SA-, PA- and 2PA-VMAT; V10 (%) of the lung in 2PA was decreased compared with IMRT, SA- and PA. In the case of PTV encompassing the mediastinum in central lung cancer, the HI and CI of 2PA was improved compared with IMRT, SA- and PA-VMAT. The received dose of heart in 2PA was higher compared with IMRT, SA- and PA-VMAT. V30 (%) and V5 (%) of the lung in 2PA-VMAT was higher compared with IMRT, SA- and PA-VMAT. V20 (%) of the lung in 2PA was decreased compared with IMRT, SA- and PA-VMAT. In conclusion, it may be necessary to classify the radiotherapy plans of lung cancer into three categories including peripheral lung cancer, PTV not encompassing the mediastinum of central lung cancer, and PTV encompassing the mediastinum of central lung cancer. Each of IMRT, SA-VMAT, PA-VMAT, 2PA-VMAT strategy had individual advantages, and therefore it may be crucial to employ different planning techniques for different disease classifications and OAR requirements.

Keywords: central lung cancer; dosimetry; intensity-modulated radiation therapy; peripheral lung cancer; volumetric modulated arc therapy.

Figures

Figure 1.
Figure 1.
Isodose curves of IMRT plan and 2PA-VMAT plan in peripheral lung cancer. (A) Isodose curves of IMRT plan. (B) Isodose curves of SA-VMAT plan. (C) Isodose curves of PA-VMAT plan. (D) Isodose curves of 2PA-VMAT plan. In peripheral lung cancer, both IMRT plan and VMAT plan exhibited satisfying prescribed tumor target coverage and OAR sparing. However, 2PA-VMAT displayed improved PTV coverage compared with IMRT. 2PA-VMAT exhibited better sparing of spinal cord, lung-all, and lung-contralateral compared with IMRT, while IMRT exhibited better heart and lung-ipsilateral sparing compared with 2PA-VMAT. IMRT had better dose conformity and homogeneity. IMRT, intensity-modulated radiation therapy; VMAT, volumetric modulated arc therapy; 2PA, double partial arc; PA, partial arc; SA, single arc; OAR, organs-at-risk.
Figure 2.
Figure 2.
Line charts display the comparison of (A) CI and (B) HI between VMAT and IMRT plans in 6 patients (indicated by different lines) with peripheral lung cancer. The horizontal axis represents the four different plans. The vertical axis represents values of CI and HI. CI, conformity index; HI, homogeneity index; VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; PA, partial arc; SA, single arc; 2PA, double partial arc.
Figure 3.
Figure 3.
Line charts display the comparison of different dosimetric parameters (indicated by different lines) between VMAT and IMRT plans in 6 patients (indicated by A-a-F-f) with peripheral lung cancer. The horizontal axis represents the four different plans. The vertical axis represents the dose size. For each case, the capital letters show the unit for dose size in cGy, and the small letters show the unit for dose size in %. VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; cGy, centigray; PA, partial arc; SA, single arc; 2PA, double partial arc.
Figure 4.
Figure 4.
Isodose curves of 2PA-VMAT and IMRT plans in central lung cancer in which the target volume does not encompass the mediastinal lymphatic drainage region. (A) Isodose curves of IMRT plan. (B) Isodose curves of SA-VMAT plan. (C) Isodose curves of PA-VMAT plan. (D) Isodose curves of 2PA-VMAT plan. In central lung cancer, when PTV does not encompass the mediastinum, there was no significant difference in PTV coverage between the IMRT and 2PA-VMAT plans. 2PA-VMAT exhibited better spinal cord sparing, and better dose conformity and homogeneity. 2PA, double partial arc; VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; PA, partial arc; SA, single arc; PTV, planning target volume.
Figure 5.
Figure 5.
Line charts display the comparison of (A) CI and (B) HI between VMAT and IMRT plans in 4 patients with central lung cancer in which the target volume encompasses the mediastinal lymphatic drainage region. The horizontal axis represents the four different plans. The vertical axis represents values of CI and HI. CI, conformity index; HI, homogeneity index; VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; PA, partial arc; SA, single arc; 2PA, double partial arc.
Figure 6.
Figure 6.
Line charts display the comparison of different dosimetric parameters (indicated by different lines) between VMAT and IMRT plans in 4 patients (indicated by A-a-D-d,) with central lung cancer in which the target volume encompasses the mediastinal lymphatic drainage region. The horizontal axis represents the four different plans. The vertical axis represents dose size. In each case, the capital letters show the unit for dose size in cGy, and the small letters show the unit for dose size in %. VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; cGy, centigray; PA, partial arc; SA, single arc; 2PA, double partial arc.
Figure 7.
Figure 7.
Isodose curves of 2PA-VMAT and IMRT plans in central lung cancer in which the target volume encompasses the mediastinal lymphatic drainage region. (A) Isodose curves of IMRT plan. (B) Isodose curves of SA-VMAT plan. (C) Isodose curves of PA-VMAT plan. (D) Isodose curves of 2PA-VMAT plan. In central lung cancer, when PTV encompasses the mediastinum, 2PA-VMAT exhibited improved PTV coverage compared with IMRT. IMRT exhibited better sparing of spinal cord, lung-all, lung-ipsilateral, and lung-contralateral compared with 2PA-VMAT. In addition, IMRT exhibited better dose conformity and homogeneity. 2PA, double partial arc; VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; PA, partial arc; SA, single arc; PTV, planning target volume.
Figure 8.
Figure 8.
Line charts display the comparison of (A) CI and (B) HI between VMAT and IMRT plans in 4 patients (indicated by different lines) with central lung cancer in which the target volume does not encompass the mediastinal lymphatic drainage region. The horizontal axis represents the four different plans. The vertical axis represents values of CI and HI. CI, conformity index; HI, homogeneity index; VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; PA, partial arc; SA, single arc; 2PA, double partial arc.
Figure 9.
Figure 9.
Line charts display the comparison of different dosimetric parameters (indicated by different lines) between VMAT and IMRT plans in 4 patients (indicated by Aa-Dd) with central lung cancer in which the target volume does not encompass the mediastinal lymphatic drainage region. The horizontal axis represents the four different plans. The vertical axis represents dose size. In each case, the capital letters show the unit for dose size in cGy, and the small letters show the unit for dose size in %. VMAT, volumetric modulated arc therapy; IMRT, intensity-modulated radiation therapy; cGy, centigray; PA, partial arc; SA, single arc; 2PA, double partial arc.

References

    1. Peeters ST, Heemsbergen WD, Van Putten WL, Slot A, Tabak H, Mens JW, Lebesque JV, Koper PC. Acute and late complications after radiotherapy for prostate cancer: Results of a multicenter randomized trial comparing 68 to 78 Gy. Int J Radiat Oncol. 2005;61:1019–1034. doi: 10.1016/j.ijrobp.2004.07.715.
    1. Pollack A, Zagars GK, Smith LG, Lee JJ, von Eschenbach AC, Antolak JA, Starkschall G, Rosen I. Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol. 2000;18:3904–3911. doi: 10.1200/JCO.2000.18.23.3904.
    1. Kupelian PA, Ciezki J, Reddy CA, Klein EA, Mahadevan A. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;71:16–22. doi: 10.1016/j.ijrobp.2007.09.020.
    1. Wolff D, Stieler F, Welzel G, Lorenz F, Abo-Madyan Y, Mai S, Herskind C, Polednik M, Steil V, Wenz F, Lohr F. Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol. 2009;93:226–233. doi: 10.1016/j.radonc.2009.08.011.
    1. Brahme A, Roos JE, Lax I. Solution of an integral-equation encountered in rotation therapy. Phys Med Biol. 1982;27:1221–1229. doi: 10.1088/0031-9155/27/10/002.
    1. Bratengeier K. 2-Step IMAT and 2-Step IMRT in three dimensions. Med Phys. 2005;32:3849–3861. doi: 10.1118/1.2134928.
    1. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35:310–317. doi: 10.1118/1.2818738.
    1. Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: An alternative to tomotherapy. Phys Med Biol. 1995;40:1435–1449. doi: 10.1088/0031-9155/40/9/004.
    1. Palma D, Vollans E, James K, Nakano S, Moiseenko V, Shaffer R, Mckenzie M, Morris J, Otto K. Volumetric modulated arc therapy for delivery of prostate radiotherapy: Comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:996–1001. doi: 10.1016/j.ijrobp.2008.06.1083.
    1. Cozzi L, Dinshaw KA, Shrivastava SK, Mahantshetty U, Engineer R, Deshpande DD, Jamema SV, Vanetti E, Clivio A, Nicolini G, Fogliata A. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol. 2008;89:180–191. doi: 10.1016/j.radonc.2008.06.013.
    1. Yoo S, Wu QJ, Lee WR, Yin FF. Radiotherapy treatment plans with RapidArc for prostate cancer involving seminal vesicles and lymph nodes. Int J Radiat Oncol Biol Phys. 2010;76:935–942. doi: 10.1016/j.ijrobp.2009.07.1677.
    1. Popescu CC, Olivotto IA, Beckham WA, Ansbacher W, Zavgorodni S, Shaffer R, Wai ES, Otto K. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys. 2010;76:287–295. doi: 10.1016/j.ijrobp.2009.05.038.
    1. Clivio A, Fogliata A, Franzetti-Pellanda A, Nicolini G, Vanetti E, Wyttenbach R, Cozzi L. Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT. Radiother Oncol. 2009;92:118–124. doi: 10.1016/j.radonc.2008.12.020.
    1. Rao M, Yang WS, Chen F, Sheng K, Ye JS, Mehta V, Shepard D, Cao DL. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: Plan quality, delivery efficiency and accuracy. Med Phys. 2010;37:1350–1359. doi: 10.1118/1.3326965.
    1. Scorsetti M, Bignardi M, Clivio A, Cozzi L, Fogliata A, Lattuada P, Mancosu P, Navarria P, Nicolini G, Urso G, et al. Volumetric modulation arc radiotherapy compared with static gantry intensity-modulated radiotherapy for malignant pleural mesothelioma tumor: A feasibility study. Int J Radiat Oncol Biol Phys. 2010;77:942–949. doi: 10.1016/j.ijrobp.2009.09.053.
    1. Zhang P, Happersett L, Hunt M, Jackson A, Zelefsky M, Mageras G. Volumetric modulated arc therapy: Planning and evaluation for prostate cancer cases. Int J Radiat Oncol Biol Phys. 2010;76:1456–1462. doi: 10.1016/j.ijrobp.2009.03.033.
    1. Wu QJ, Yoo S, Kirkpatrick JP, Thongphiew D, Yin FF. Volumetric arc intensity-modulated therapy for spine body radiotherapy: Comparison with static intensity-modulated treatment. Int J Radiat Oncol Biol Phys. 2009;75:1596–1604. doi: 10.1016/j.ijrobp.2009.05.005.
    1. Zacarias AS, Brown MF, Mills MD. Volumetric modulated arc therapy (VMAT) treatment planning for superficial tumors. Med Dosim. 2010;35:226–229. doi: 10.1016/j.meddos.2009.06.006.
    1. Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: A comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74:252–259. doi: 10.1016/j.ijrobp.2008.12.033.
    1. Lagerwaard FJ, Meijer OW, van der Hoorn EA, Verbakel WF, Slotman BJ, Senan S. Volumetric modulated arc radiotherapy for vestibular schwannomas. Int J Radiat Oncol Biol Phys. 2009;74:610–615. doi: 10.1016/j.ijrobp.2008.12.076.
    1. Lagerwaard FJ, van der Hoorn EA, Verbakel WF, Haasbeek CJ, Slotman BJ, Senan S. Whole-brain radiotherapy with simultaneous integrated boost to multiple brain metastases using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2009;75:253–259. doi: 10.1016/j.ijrobp.2009.03.029.
    1. Verbakel WF, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ. Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity-modulated arcs. Radiother Oncol. 2009;93:122–124. doi: 10.1016/j.radonc.2009.05.020.
    1. Ong CL, Verbakel WF, Cuijpers JP, Slotman BJ, Lagerwaard FJ, Senan S. Stereotactic radiotherapy for peripheral lung tumors: A comparison of volumetric modulated arc therapy with 3 other delivery techniques. Radiother Oncol. 2010;97:437–442. doi: 10.1016/j.radonc.2010.09.027.
    1. Matuszak MM, Yan D, Grills I, Martinez A. Clinical applications of volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2010;77:608–616. doi: 10.1016/j.ijrobp.2009.08.032.
    1. Quan EM, Chang JY, Liao Z, Xia T, Yuan Z, Liu H, Li X, Wages CA, Mohan R, Zhang X. Automated volumetric modulated Arc therapy treatment planning for stage III lung cancer: How does it compare with intensity-modulated radio therapy? Int J Radiat Oncol Biol Phys. 2012;84:e69–e76. doi: 10.1016/j.ijrobp.2012.02.017.
    1. van't Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. Int J Radiat Oncol Biol Phys. 1997;37:731–736. doi: 10.1016/S0360-3016(96)00601-3.
    1. Scorsetti M, Navarria P, Mancosu P, Alongi F, Castiglioni S, Cavina R, Cozzi L, Fogliata A, Pentimalli S, Tozzi A, Santoro A. Large volume unresectable locally advanced non-small cell lung cancer: Acute toxicity and initial outcome results with rapid arc. Radiat Oncol. 2010;5:94. doi: 10.1186/1748-717X-5-94.
    1. Jiang X, Li T, Liu Y, Zhou L, Xu Y, Zhou X, Gong Y. Planning analysis for locally advanced lung cancer: Dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT) Radiat Oncol. 2011;6:140. doi: 10.1186/1748-717X-6-140.
    1. McGrath SD, Matuszak MM, Yan D, Kestin LL, Martinez AA, Grills IS. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis. Radiother Oncol. 2010;95:153–157. doi: 10.1016/j.radonc.2009.12.039.
    1. Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EM. Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: A comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys. 2011;81:1560–1567. doi: 10.1016/j.ijrobp.2010.09.014.
    1. Bertelsen A, Hansen CR, Johansen J, Brink C. Single Arc volumetric modulated Arc therapy of head and neck cancer. Radiother Oncol. 2010;95:142–148. doi: 10.1016/j.radonc.2010.01.011.
    1. Guckenberger M, Richter A, Krieger T, Wilbert J, Baier K, Flentje M. Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol. 2009;93:259–265. doi: 10.1016/j.radonc.2009.08.015.
    1. Shaffer R, Morris WJ, Moiseenko V, Welsh M, Crumley C, Nakano S, Schmuland M, Pickles T, Otto K. Volumetric modulated Arc therapy and conventional intensity-modulated radiotherapy for simultaneous maximal intraprostatic boost: A planning comparison study. Clin Oncol (R Coll Radiol) 2009;21:401–407. doi: 10.1016/j.clon.2009.01.014.
    1. Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Anscher MS, Lind PA. Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys. 2001;51:650–659. doi: 10.1016/S0360-3016(01)01685-6.
    1. Claude L, Pérol D, Ginestet C, Falchero L, Arpin D, Vincent M, Martel I, Hominal S, Cordier JF, Carrie C. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: Clinical and dosimetric factors analysis. Radiother Oncol. 2004;71:175–181. doi: 10.1016/j.radonc.2004.02.005.
    1. Rancati T, Ceresoli GL, Gagliardi G, Schipani S, Cattaneo GM. Factors predicting radiation pneumonitis in lung cancer patients: A retrospective study. Radiother Oncol. 2003;67:275–283. doi: 10.1016/S0167-8140(03)00119-1.
    1. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC) Int J Radiat Oncol Biol Phys. 1999;45:323–329. doi: 10.1016/S0360-3016(99)00183-2.
    1. Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates. Int J Radiat Oncol Biol Phys. 2007;67:410–416. doi: 10.1016/j.ijrobp.2006.09.030.
    1. Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, Mohan R, Cox JD, Komaki R. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT) Int J Radiat Oncol Biol Phys. 2006;66:1399–1407. doi: 10.1016/j.ijrobp.2006.07.1337.
    1. Chung HT, Lee B, Park E, Lu JJ, Xia P. Can all centers plan intensity-modulated radiotherapy (IMRT) effectively? An external audit of dosimetric comparisons between three-dimensional conformal radiotherapy and IMRT for adjuvant chemoradiation for gastric cancer. Int J Radiat Oncol Biol Phys. 2008;71:1167–1174. doi: 10.1016/j.ijrobp.2007.11.040.

Source: PubMed

3
Se inscrever