Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b

Kai Keng Ang, Zheng Yang Chin, Chuanchu Wang, Cuntai Guan, Haihong Zhang, Kai Keng Ang, Zheng Yang Chin, Chuanchu Wang, Cuntai Guan, Haihong Zhang

Abstract

The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classifying 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends on the subject-specific frequency band. This paper presents the Filter Bank Common Spatial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on Datasets 2a and 2b of the Brain-Computer Interface (BCI) Competition IV. Dataset 2a comprised 4 classes of 22 channels EEG data from 9 subjects, and Dataset 2b comprised 2 classes of 3 bipolar channels EEG data from 9 subjects. Multi-class extensions to FBCSP are also presented to handle the 4-class EEG data in Dataset 2a, namely, Divide-and-Conquer (DC), Pair-Wise (PW), and One-Versus-Rest (OVR) approaches. Two feature selection algorithms are also presented to select discriminative CSP features on Dataset 2b, namely, the Mutual Information-based Best Individual Feature (MIBIF) algorithm, and the Mutual Information-based Rough Set Reduction (MIRSR) algorithm. The single-trial classification accuracies were presented using 10 × 10-fold cross-validations on the training data and session-to-session transfer on the evaluation data from both datasets. Disclosure of the test data labels after the BCI Competition IV showed that the FBCSP algorithm performed relatively the best among the other submitted algorithms and yielded a mean kappa value of 0.569 and 0.600 across all subjects in Datasets 2a and 2b respectively.

Keywords: Bayesian classification; brain-computer interface; electroencephalogram; feature selection; mutual information.

Figures

Figure 1
Figure 1
Architecture of the filter bank common spatial pattern (FBCSP) algorithm for the training and evaluation phases.
Figure 2
Figure 2
The illustration on the extraction of a single-trial EEG segment from the training data for the multi-class FBCSP training phase in Dataset 2a, and the generation of the classification outputs using the multi-class extension to FBCSP on the entire time segment of a single-trial for the evaluation phase.
Figure 3
Figure 3
The illustration on the extraction of a single-trial EEG segment from the training data for the FBCSP training phase in Dataset 2b, and the generation of the classification outputs using FBCSP on the entire time segment of a single-trial for the evaluation phase.

References

    1. Ang K. K., Chin Z. Y., Zhang H., Guan C. (2008). “Filter bank common spatial pattern (FBCSP) in brain-computer interface,” in Proceedings of the IEEE International Joint Conference on Neural Networks, Hong Kong, 2391–2398
    1. Ang K. K., Quek C. (2005). RSPOP: rough set-based pseudo outer-product fuzzy rule identification algorithm. Neural Comput. 17, 205–24310.1162/0899766052530857
    1. Ang K. K., Quek C. (2006). “Rough set-based neuro-fuzzy system,” in Proceedings of the IEEE International Joint Conference on Neural Networks, Vancouver, BC, 742–749
    1. Ang K. K., Quek C. (2012). Supervised pseudo self-evolving cerebellar algorithm for generating fuzzy membership functions. Expert Syst. Appl. 39, 2279–228710.1016/j.eswa.2011.08.001
    1. Blankertz B., Dornhege G., Krauledat M., Müller K.-R., Curio G. (2007). The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37, 539–55010.1016/j.neuroimage.2007.01.051
    1. Blankertz B., Losch F., Krauledat M., Dornhege G., Curio G., Müller K. R. (2008a). The Berlin brain–computer interface: accurate performance from first-session in BCI-naive subjects. IEEE Trans. Biomed. Eng. 55, 2452–246210.1109/TBME.2008.923152
    1. Blankertz B., Tomioka R., Lemm S., Kawanabe M., Müller K.-R. (2008b). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25, 41–5610.1109/MSP.2008.4408441
    1. Bowman A. W., Azzalini A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. New York: Oxford University Press
    1. Chin Z. Y., Ang K. K., Wang C., Guan C., Zhang H. (2009). “Multi-class filter bank common spatial pattern for four-class motor imagery BCI,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, 571–574
    1. Dornhege G., Blankertz B., Curio G., Müller K.-R. (2004a). Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51, 993–100210.1109/TBME.2004.827088
    1. Dornhege G., Blankertz B., Curio G., Müller K.-R. (2004b). Increase Information Transfer Rates in BCI by CSP Extension to Multi-Class, Vol. 16 Cambridge, MA: MIT Press
    1. Dornhege G., Blankertz B., Krauledat M., Losch F., Curio G., Müller K.-R. (2006). Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53, 2274–228110.1109/TBME.2006.883649
    1. Duda R. O., Hart P. E., Stork D. G. (2001). Pattern Classification, 2nd Edn New York: John Wiley
    1. Fukunaga K. (1990). Introduction to Statistical Pattern Recognition, 2nd Edn New York: Academic Press
    1. Grosse-Wentrup M., Buss M. (2008). Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans. Biomed. Eng. 55, 1991–200010.1109/TBME.2008.921154
    1. Jain A. K., Duin R. P. W., Jianchang M. (2000). Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–3710.1109/34.824819
    1. Leeb R., Lee F., Keinrath C., Scherer R., Bischof H., Pfurtscheller G. (2007). Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 473–48210.1109/TNSRE.2007.906956
    1. Lemm S., Blankertz B., Curio G., Müller K.-R. (2005). Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52, 1541–154810.1109/TBME.2005.851521
    1. Müller-Gerking J., Pfurtscheller G., Flyvbjerg H. (1999). Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110, 787–79810.1016/S1388-2457(98)00038-8
    1. Parzen E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–107610.1214/aoms/1177704472
    1. Pfurtscheller G., Aranibar A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46, 138–14610.1016/0013-4694(79)90063-4
    1. Pfurtscheller G., Lopes da Silva F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–185710.1016/S1388-2457(99)00141-8
    1. Ramoser H., Müller-Gerking J., Pfurtscheller G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8, 441–44610.1109/86.895946
    1. Tangermann M., Müller K.-R., Aertsen A., Birbaumer N., Braun C., Brunner C., Leeb R., Mehring C., Miller K. J., Müller-Putz G., Nolte G., Pfurtscheller G., Preissl H., Schalk G., Schlögl A., Vidaurre C., Waldert S., Blankertz B. (2012). Review of the BCI competition IV. Front. Neurosci. (in press).
    1. Tomioka R., Dornhege G., Nolte G., Blankertz B., Aihara K., Müller K.-R. (2006). Spectrally Weighted Common Spatial Pattern Algorithm for Single Trial EEG Classification. Mathematical Engineering Technical Reports, University of Tokyo, Tokyo
    1. Wu W., Gao X., Hong B., Gao S. (2008). Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans. Biomed. Eng. 55, 1733–174310.1109/TBME.2008.919125
    1. Zhang D., Wang Y., Gao X., Hong B., Gao S. (2007). An algorithm for idle-state detection in motor-imagery-based brain-computer interface. Comput. Intell. Neurosci. 2007, 5

Source: PubMed

3
Se inscrever