Abnormal Resting-State Functional Connectivity Strength in Mild Cognitive Impairment and Its Conversion to Alzheimer's Disease

Yuxia Li, Xiaoni Wang, Yongqiu Li, Yu Sun, Can Sheng, Hongyan Li, Xuanyu Li, Yang Yu, Guanqun Chen, Xiaochen Hu, Bin Jing, Defeng Wang, Kuncheng Li, Frank Jessen, Mingrui Xia, Ying Han, Yuxia Li, Xiaoni Wang, Yongqiu Li, Yu Sun, Can Sheng, Hongyan Li, Xuanyu Li, Yang Yu, Guanqun Chen, Xiaochen Hu, Bin Jing, Defeng Wang, Kuncheng Li, Frank Jessen, Mingrui Xia, Ying Han

Abstract

Individuals diagnosed with mild cognitive impairment (MCI) are at high risk of transition to Alzheimer's disease (AD). However, little is known about functional characteristics of the conversion from MCI to AD. Resting-state functional magnetic resonance imaging was performed in 25 AD patients, 31 MCI patients, and 42 well-matched normal controls at baseline. Twenty-one of the 31 MCI patients converted to AD at approximately 24 months of follow-up. Functional connectivity strength (FCS) and seed-based functional connectivity analyses were used to assess the functional differences among the groups. Compared to controls, subjects with MCI and AD showed decreased FCS in the default-mode network and the occipital cortex. Importantly, the FCS of the left angular gyrus and middle occipital gyrus was significantly lower in MCI-converters as compared with MCI-nonconverters. Significantly decreased functional connectivity was found in MCI-converters compared to nonconverters between the left angular gyrus and bilateral inferior parietal lobules, dorsolateral prefrontal and lateral temporal cortices, and the left middle occipital gyrus and right middle occipital gyri. We demonstrated gradual but progressive functional changes during a median 2-year interval in patients converting from MCI to AD, which might serve as early indicators for the dysfunction and progression in the early stage of AD.

Figures

Figure 1
Figure 1
The FCS in AD, MCI, and control groups. (a) The images show the mean FCS in AD, MCI, and control groups. The color bar at the bottom of each picture represents the FCS value for each group. (b) The images demonstrated the significant differences among the three groups and within each pair of the groups at baseline. The color bar at the bottom of each picture represents either F values for ANOVA or T values for post hoc t-tests.
Figure 2
Figure 2
The FCS differences between MCI-c and MCI-nc groups. The FCS of the left angular gyrus and middle occipital gyrus were significantly lower in the MCI-c group compared with the MCI-nc group. The color bar represents the T values for the two-sample t-test between MCI-c and MCI-nc groups.
Figure 3
Figure 3
The seed-based RSFC analysis between MCI-c and MCI-nc. The left and middle column present the within group RSFC pattern for the left angular gyrus and the left middle occipital gyrus. Between-group comparison on the right column revealed that comparing to MCI-nc group the MCI-c group had significantly decreased functional connectivity between the left angular gyrus and bilateral dlPFC and lateral temporal cortices and between the left middle occipital gyrus and right central sulci and right middle occipital gyrus. The color bars at the bottom represent the T value for either the one-sample t-test or two-sample t-test.
Figure 4
Figure 4
The correlation between FCS and neuropsychological scores in patients. The color bar represents the r value. AVLT-I, auditory verbal learning test-immediate recall; AVLT-D, auditory verbal learning test-delayed recall; AVLT-R, auditory verbal learning test-recognition; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.

References

    1. Dubois B., Feldman H. H., Jacova C., et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. The Lancet Neurology. 2014;13(6):614–629. doi: 10.1016/s1474-4422(14)70090-0.
    1. Petersen R. C., Doody R., Kurz A., et al. Current concepts in mild cognitive impairment. Archives of Neurology. 2001;58(12):1985–1992. doi: 10.1001/archneur.58.12.1985.
    1. Fayed N., Modrego P. J., Salinas G. R., Gazulla J. Magnetic resonance imaging based clinical research in Alzheimer's disease. Journal of Alzheimer's Disease. 2012;31(supplement 3):S5–S18. doi: 10.3233/jad-2011-111292.
    1. Wattjes M. P. Structural MRI. International Psychogeriatrics/IPA. 2011;23(supplement 2):S13–S24. doi: 10.1017/s1041610211000913.
    1. Apostolova L. G., Mosconi L., Thompson P. M., et al. Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal. Neurobiology of Aging. 2010;31(7):1077–1088. doi: 10.1016/j.neurobiolaging.2008.08.008.
    1. Bai F., Xie C., Watson D. R., et al. Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: a longitudinal resting-state study. PLoS ONE. 2011;6(12) doi: 10.1371/journal.pone.0029288.e29288
    1. Eskildsen S. F., Coupé P., Fonov V. S., Pruessner J. C., Collins D. L. Structural imaging biomarkers of Alzheimer's disease: predicting disease progression. Neurobiology of Aging. 2015;36(supplement 1):S23–S31. doi: 10.1016/j.neurobiolaging.2014.04.034.
    1. Bai F., Watson D. R., Shi Y., et al. Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS ONE. 2011;6(9) doi: 10.1371/journal.pone.0024271.e24271
    1. Binnewijzend M. A. A., Schoonheim M. M., Sanz-Arigita E., et al. Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging. 2012;33(9):2018–2028. doi: 10.1016/j.neurobiolaging.2011.07.003.
    1. Dipasquale O., Griffanti L., Clerici M., Nemni R., Baselli G., Baglio F. High-dimensional ica analysis detects within-network functional connectivity damage of default-mode and sensory-motor networks in alzheimer's disease. Frontiers in Human Neuroscience. 2015;9, article 43 doi: 10.3389/fnhum.2015.00043.
    1. Wang Z., Liang P., Jia X., et al. The baseline and longitudinal changes of PCC connectivity in mild cognitive impairment: a combined structure and resting-state fMRI study. PLoS ONE. 2012;7(5) doi: 10.1371/journal.pone.0036838.e36838
    1. Wang Z., Jia X., Liang P., et al. Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI. European Journal of Radiology. 2012;81(2):277–285. doi: 10.1016/j.ejrad.2010.12.044.
    1. Dai Z., Yan C., Li K., et al. Identifying and mapping connectivity patterns of brain network hubs in Alzheimer's disease. Cerebral Cortex. 2015;25(10):3723–3742. doi: 10.1093/cercor/bhu246.
    1. Liang X., Zou Q., He Y., Yang Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(5):1929–1934. doi: 10.1073/pnas.1214900110.
    1. Buckner R. L., Sepulcre J., Talukdar T., et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience. 2009;29(6):1860–1873. doi: 10.1523/jneurosci.5062-08.2009.
    1. Petersen R. C. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine. 2004;256(3):183–194. doi: 10.1111/j.1365-2796.2004.01388.x.
    1. Dubois B., Feldman H. H., Jacova C., et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. The Lancet Neurology. 2007;6(8):734–746. doi: 10.1016/s1474-4422(07)70178-3.
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th. Washington, DC, USA: American Psychiatric Press; 1994.
    1. Zhenxin Z., Xia H., Hui L., et al The mini-mental state examination in the Chinese residents population aged 55 years and over in the urban and rural areas of Beijing. Chinese Journal of Neurology. 1999;32(3):149–153.
    1. Lu J., Li D., Li F., et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. Journal of Geriatric Psychiatry and Neurology. 2011;24(4):184–190. doi: 10.1177/0891988711422528.
    1. Delis D. C., Kramer J. H., Kaplan E., Ober B. A. California Verbal Learning Test: Adult Version Manual. San Antonio, Tex, USA: The Psychological Corporation; 1987.
    1. Morris J. C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–2414.
    1. Oldfield R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Chao-Gan Y., Yu-Feng Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in System Neuroscience. 2010;4, article 13 doi: 10.3389/fnsys.2010.00013.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Ledberg A., Åkerman S., Roland P. E. Estimation of the probabilities of 3D clusters in functional brain images. NeuroImage. 1998;8(2):113–128. doi: 10.1006/nimg.1998.0336.
    1. Song X.-W., Dong Z.-Y., Long X.-Y., et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE. 2011;6(9) doi: 10.1371/journal.pone.0025031.e25031
    1. Zeng L.-L., Wang D., Fox M. D., et al. Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(16):6058–6062. doi: 10.1073/pnas.1317424111.
    1. van Dijk K. R. A., Sabuncu M. R., Buckner R. L. The influence of head motion on intrinsic functional connectivity MRI. NeuroImage. 2012;59(1):431–438. doi: 10.1016/j.neuroimage.2011.07.044.
    1. Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.
    1. Fox M. D., Zhang D., Snyder A. Z., Raichle M. E. The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology. 2009;101(6):3270–3283. doi: 10.1152/jn.90777.2008.
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage. 2006;31(4):1536–1548. doi: 10.1016/j.neuroimage.2006.02.048.
    1. Weissenbacher A., Kasess C., Gerstl F., Lanzenberger R., Moser E., Windischberger C. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage. 2009;47(4):1408–1416. doi: 10.1016/j.neuroimage.2009.05.005.
    1. Murphy K., Birn R. M., Handwerker D. A., Jones T. B., Bandettini P. A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage. 2009;44(3):893–905. doi: 10.1016/j.neuroimage.2008.09.036.
    1. Han Y., Wang J., Zhao Z., et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage. 2011;55(1):287–295. doi: 10.1016/j.neuroimage.2010.11.059.
    1. Wang J., Zuo X., Dai Z., et al. Disrupted functional brain connectome in individuals at risk for Alzheimer's disease. Biological Psychiatry. 2013;73(5):472–481. doi: 10.1016/j.biopsych.2012.03.026.
    1. Toussaint P.-J., Maiz S., Coynel D., et al. Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. NeuroImage. 2014;101:778–786. doi: 10.1016/j.neuroimage.2014.08.003.
    1. Gour N., Felician O., Didic M., et al. Functional connectivity changes differ in early and late-onset Alzheimer's disease. Human Brain Mapping. 2014;35(7):2978–2994. doi: 10.1002/hbm.22379.
    1. Cha J., Jo H. J., Kim H. J., et al. Functional alteration patterns of default mode networks: comparisons of normal aging, amnestic mild cognitive impairment and Alzheimer's disease. The European Journal of Neuroscience. 2013;37(12):1916–1924. doi: 10.1111/ejn.12177.
    1. Persson J., Pudas S., Nilsson L.-G., Nyberg L. Longitudinal assessment of default-mode brain function in aging. Neurobiology of Aging. 2014;35(9):2107–2117. doi: 10.1016/j.neurobiolaging.2014.03.012.
    1. Sorg C., Riedl V., Mühlau M., et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(47):18760–18765. doi: 10.1073/pnas.0708803104.
    1. Mintun M. A., Larossa G. N., Sheline Y. I., et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67(3):446–452. doi: 10.1212/01.wnl.0000228230.26044.a4.
    1. Matsuda H. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease. Annals of Nuclear Medicine. 2001;15(2):85–92. doi: 10.1007/bf02988596.
    1. Damoiseaux J. S., Prater K. E., Miller B. L., Greicius M. D. Functional connectivity tracks clinical deterioration in Alzheimer's disease. Neurobiology of Aging. 2012;33(4):828.e19–828.e30. doi: 10.1016/j.neurobiolaging.2011.06.024.
    1. Hu Z., Sheng C., Sun Y., et al. Structural and resting state functional MRI characteristics of patients at high risk for Alzheimer's disease. Chinese Journal of Neurology. 2014;47(12):824–830.
    1. Bays P. M., Husain M. Dynamic shifts of limited working memory resources in human vision. Science. 2008;321(5890):851–854. doi: 10.1126/science.1158023.
    1. Weiler M., Fukuda A., Massabki L. H. P., et al. Default mode, executive function, and language functional connectivity networks are compromised in mild Alzheimeŕs disease. Current Alzheimer Research. 2014;11(3):274–282. doi: 10.2174/1567205011666140131114716.
    1. Cai S., Huang L., Zou J., et al. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI. PLoS ONE. 2015;10(2) doi: 10.1371/journal.pone.0115573.e0115573
    1. Zhou B., Liu Y., Zhang Z., et al. Impaired functional connectivity of the thalamus in Alzheimer's disease and mild cognitive impairment: a resting-state fMRI study. Current Alzheimer Research. 2013;10(7):754–766. doi: 10.2174/15672050113109990146.
    1. Ewers M., Insel P. S., Stern Y., Weiner M. W., The Alzheimer's Disease Neuroimaging Initiative Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology. 2013;80(13):1194–1201. doi: 10.1212/wnl.0b013e31828970c2.
    1. Motomura K., Fujii M., Maesawa S., Kuramitsu S., Natsume A., Wakabayashi T. Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study. Journal of Neurosurgery. 2014;121(1):142–148. doi: 10.3171/2014.2.jns131234.
    1. Wang Z., Xia M., Dai Z., et al. Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer's disease. Brain Structure and Function. 2015;220(2):745–762. doi: 10.1007/s00429-013-0681-9.
    1. Jacobs H. I. L., Van Boxtel M. P. J., Heinecke A., et al. Functional integration of parietal lobe activity in early Alzheimer disease. Neurology. 2012;78(5):352–360. doi: 10.1212/wnl.0b013e318245287d.
    1. Bai F., Liao W., Watson D. R., et al. Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients. Behavioural Brain Research. 2011;216(2):666–672. doi: 10.1016/j.bbr.2010.09.010.
    1. Caroli A., Geroldi C., Nobili F., et al. Functional compensation in incipient Alzheimer's disease. Neurobiology of Aging. 2010;31(3):387–397. doi: 10.1016/j.neurobiolaging.2008.05.001.
    1. Abuhassan K., Coyle D., Belatreche A., Maguire L. Compensating for synaptic loss in Alzheimer's disease. Journal of Computational Neuroscience. 2014;36(1):19–37. doi: 10.1007/s10827-013-0462-8.
    1. Tramutola A., Triplett J. C., Di Domenico F., et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. Journal of Neurochemistry. 2015;133(5):739–749. doi: 10.1111/jnc.13037.
    1. Yamashita K.-I., Taniwaki Y., Utsunomiya H., Taniwaki T. Cerebral blood flow reduction associated with orientation for time in amnesic mild cognitive impairment and Alzheimer disease patients. Journal of Neuroimaging. 2014;24(6):590–594. doi: 10.1111/jon.12096.
    1. Zhang H.-Y., Wang S.-J., Xing J., et al. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behavioural Brain Research. 2009;197(1):103–108. doi: 10.1016/j.bbr.2008.08.012.
    1. Apostolova L. G., Steiner C. A., Akopyan G. G., et al. Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease. Archives of Neurology. 2007;64(10):1489–1495. doi: 10.1001/archneur.64.10.1489.
    1. Ossenkoppele R., Tolboom N., Foster-Dingley J. C., et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. European Journal of Nuclear Medicine and Molecular Imaging. 2012;39(6):990–1000. doi: 10.1007/s00259-012-2102-3.
    1. Li S., Yuan X., Pu F., et al. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients. The Journal of Neuroscience. 2014;34(32):10541–10553. doi: 10.1523/jneurosci.4356-13.2014.
    1. Lin S.-H., Yu C.-Y., Pai M.-C. The occipital white matter lesions in Alzheimer's disease patients with visual hallucinations. Clinical Imaging. 2006;30(6):388–393. doi: 10.1016/j.clinimag.2006.09.025.
    1. Ossenkoppele R., Cohn-Sheehy B. I., La Joie R., et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer's disease. Human Brain Mapping. 2015 doi: 10.1002/hbm.22927.
    1. Yang G. J., Murray J. D., Repovs G., et al. Altered global brain signal in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(20):7438–7443. doi: 10.1073/pnas.1405289111.

Source: PubMed

3
Se inscrever