T2DM Self-Management via Smartphone Applications: A Systematic Review and Meta-Analysis

Mingxuan Cui, Xueyan Wu, Jiangfeng Mao, Xi Wang, Min Nie, Mingxuan Cui, Xueyan Wu, Jiangfeng Mao, Xi Wang, Min Nie

Abstract

Background: Mobile health interventions (mHealth) based on smartphone applications (apps) are promising tools to help improve diabetes care and self-management; however, more evidence on the efficacy of mHealth in diabetes care is needed. The objective of this study was to conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effect of mHealth apps on changes in hemoglobin A1c (HbA1c), blood glucose, blood pressure, serum lipids, and body weight in type 2 diabetes mellitus (T2DM) patients.

Methods: Two independent reviewers searched three online databases (PubMed, the Cochrane Library, and EMBASE) to identify relevant studies published between January 2005 and June 2016. Of the 2,596 articles retrieved, 13 RCTs were included. We used random effects model to estimate the pooled results.

Results: Thirteen studies were selected for the systematic review, six of which with data available containing 1,022 patients were included for the meta-analysis. There was a moderate effect on glycemic control after the mHealth app-based interventions. The overall effect on HbA1c shown as mean difference (MD) was -0.40% (-4.37 mmol/mol) (95% confidence interval [CI] -0.69 to -0.11% [-7.54 to -1.20 mmol/mol]; p = 0.007) and standardized mean differences (SMD) was -0.40% (-4.37 mmol/mol) (95% confidence interval [CI] -0.69 to -0.10% [-7.54 to -1.09 mmol/mol]; p = 0.008). A subgroup analysis showed a similar effect with -0.33% (-3.61 mmol/mol) (95% CI -0.59 to -0.06% [-6.45 to -0.66 mmol/mol]; p = 0.02) in MD and -0.38% (-4.15 mmol/mol) (95% CI -0.71 to -0.05% [-7.76 to -0.55 mmol/mol]; p = 0.02) in SMD in studies where patients' baseline HbA1c levels were less than 8.0%. No effects of mHealth app interventions were found on blood pressure, serum lipids, or weight. Assessment of overall study quality and publication bias demonstrated a low risk of bias among the six studies.

Conclusions: Smartphone apps offered moderate benefits for T2DM self-management. However, more research with valid study designs and longer follow-up is needed to evaluate the impact of mHealth apps for diabetes care and self-management.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flow diagram for the scientific…
Fig 1. Flow diagram for the scientific paper selection from databases.
Fig 2. A model to demonstrate how…
Fig 2. A model to demonstrate how self-management apps work.
Fig 3. Forest plot for HbA1c level…
Fig 3. Forest plot for HbA1c level in studies with feedback group.
Fig 4. Forest plot for HbA1c
Fig 4. Forest plot for HbA1c

References

    1. CDC CFDC. Increasing prevalence of diagnosed diabetes—United States and Puerto Rico, 1995–2010. MMWR Morb Mortal Wkly Rep. 2012;61(45):918–21.
    1. Fery F, Paquot N. [Etiopathogenesis and pathophysiology of type 2 diabetes]. Rev Med Liege. 2005;60(5–6):361–8.
    1. Hirsch IB, Bode BW, Childs BP, Close KL, Fisher WA, Gavin JR, et al. Self-Monitoring of Blood Glucose (SMBG) in insulin- and non-insulin-using adults with diabetes: consensus recommendations for improving SMBG accuracy, utilization, and research. Diabetes Technol Ther. 2008;10(6):419–39. 10.1089/dia.2008.0104
    1. Moncrieft AE, Llabre MM, McCalla JR, Gutt M, Mendez AJ, Gellman MD, et al. Effects of a Multicomponent Life-Style Intervention on Weight, Glycemic Control, Depressive Symptoms, and Renal Function in Low-Income, Minority Patients With Type 2 Diabetes: Results of the Community Approach to Lifestyle Modification for Diabetes Randomized Controlled Trial. PSYCHOSOM MED. 2016.
    1. Whitehead LC, Crowe MT, Carter JD, Maskill VR, Carlyle D, Bugge C, et al. A nurse-led interdisciplinary approach to promote self-management of type 2 diabetes: a process evaluation of post-intervention experiences. J EVAL CLIN PRACT. 2016.
    1. Nour M, Chen J, Allman-Farinelli M. Efficacy and External Validity of Electronic and Mobile Phone-Based Interventions Promoting Vegetable Intake in Young Adults: Systematic Review and Meta-Analysis. J MED INTERNET RES. 2016;18(4):e58 10.2196/jmir.5082
    1. Hall AK, Cole-Lewis H, Bernhardt JM. Mobile text messaging for health: a systematic review of reviews. Annu Rev Public Health. 2015;36:393–415. 10.1146/annurev-publhealth-031914-122855
    1. Devi BR, Syed-Abdul S, Kumar A, Iqbal U, Nguyen PA, Li YC, et al. mHealth: An updated systematic review with a focus on HIV/AIDS and tuberculosis long term management using mobile phones. Comput Methods Programs Biomed. 2015;122(2):257–65. 10.1016/j.cmpb.2015.08.003
    1. Eng DS, Lee JM. The promise and peril of mobile health applications for diabetes and endocrinology. PEDIATR DIABETES. 2013;14(4):231–8. 10.1111/pedi.12034
    1. Mulvaney SA, Ritterband LM, Bosslet L. Mobile intervention design in diabetes: review and recommendations. Curr Diab Rep. 2011;11(6):486–93. 10.1007/s11892-011-0230-y
    1. Pal K, Eastwood SV, Michie S, Farmer A, Barnard ML, Peacock R, et al. Computer-based interventions to improve self-management in adults with type 2 diabetes: a systematic review and meta-analysis. DIABETES CARE. 2014;37(6):1759–66. 10.2337/dc13-1386
    1. Arnhold M, Quade M, Kirch W. Mobile applications for diabetics: a systematic review and expert-based usability evaluation considering the special requirements of diabetes patients age 50 years or older. J MED INTERNET RES. 2014;16(4):e104 10.2196/jmir.2968
    1. Costa BM, Fitzgerald KJ, Jones KM, Dunning AT. Effectiveness of IT-based diabetes management interventions: a review of the literature. BMC FAM PRACT. 2009;10:72 10.1186/1471-2296-10-72
    1. Shea S, Weinstock RS, Starren J, Teresi J, Palmas W, Field L, et al. A randomized trial comparing telemedicine case management with usual care in older, ethnically diverse, medically underserved patients with diabetes mellitus. J Am Med Inform Assoc. 2006;13(1):40–51. 10.1197/jamia.M1917
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS MED. 2009;6(7):e1000097 10.1371/journal.pmed.1000097
    1. Karhula T, Vuorinen AL, Raapysjarvi K, Pakanen M, Itkonen P, Tepponen M, et al. Telemonitoring and Mobile Phone-Based Health Coaching Among Finnish Diabetic and Heart Disease Patients: Randomized Controlled Trial. J MED INTERNET RES. 2015;17(6):e153 10.2196/jmir.4059
    1. Holmen H, Torbjørnsen A, Wahl AK, Jenum AK, Småstuen MC, Årsand E, et al. A mobile health intervention for self-management and lifestyle change for persons with type 2 diabetes, part 2: One-year results from the Norwegian randomized controlled trial RENEWING HEALTH. Diabetes Technology and Therapeutics. 2014;18:S58–9.
    1. Orsama AL, Lahteenmaki J, Harno K, Kulju M, Wintergerst E, Schachner H, et al. Active assistance technology reduces glycosylated hemoglobin and weight in individuals with type 2 diabetes: results of a theory-based randomized trial. Diabetes Technol Ther. 2013;15(8):662–9. 10.1089/dia.2013.0056
    1. Q CC, S MD, T ML, B EA, B SH, G AL. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. DIABETES TECHNOL THE. 2011(SUPPL.1).
    1. Y HJ, P MS, K TN, Y SJ, C GJ, H TG, et al. A Ubiquitous Chronic Disease Care system using cellular phones and the internet. Diabetic medicine: a journal of the British Diabetic Association. 2009(6).
    1. Rodrı Guez-Idı Goras Marı A I S J, Sa Nchez-Garrido-Escudero Ramo N JL, Escolar-Castello Jose L IM, Fuentes-Simo N Marı A V AD. Telemedicine Influence on the Follow-Up of Type 2 Diabetes Patients. 2009. 10.1089/dia.2008.0114
    1. Q CC, C SS, M JM, L D, O MC, G A. WellDoc™ Mobile Diabetes Management Randomized Controlled Trial: Change in Clinical and Behavioral Outcomes and Patient and Physician Satisfaction. DIABETES TECHNOL THE. 2008(3).
    1. C JH, L HC, L DJ, K HS, Y KH. Mobile communication using a mobile phone with a glucometer for glucose control in Type 2 patients with diabetes: as effective as an Internet-based glucose monitoring system. J TELEMED TELECARE. 2009(2).
    1. I RS, Z K, H D, M N, S A, T B, et al. Evaluation of a mobile phone telemonitoring system for glycaemic control in patients with diabetes. J TELEMED TELECARE. 2009(3).
    1. E S, RS I, JA C, A L, A S. UK and Canadian perspectives of the effectiveness of mobile diabetes management systems. Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference. 2009.
    1. van der Weegen S, Verwey R, Spreeuwenberg M, Tange H, van der Weijden T, de Witte L. It's LiFe! Mobile and Web-Based Monitoring and Feedback Tool Embedded in Primary Care Increases Physical Activity: A Cluster Randomized Controlled Trial. J MED INTERNET RES. 2015;17(7):e184 10.2196/jmir.4579
    1. Q CC, S PL, S ML, T ML, B EA, G AL. Mobile diabetes intervention for glycemic control: Impact on physician prescribing. Journal of diabetes science and technology. 2014(2).
    1. Hsu WC, Lau KHK, Huang R, Ghiloni S, Le H, Gilroy S, et al. Utilization of a cloud-based diabetes management program for insulin initiation and titration enables collaborative decision making between healthcare providers and patients. Diabetes Technology and Therapeutics. 2016;18(2):59–67. 10.1089/dia.2015.0160
    1. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111. 10.1002/jrsm.12
    1. Wiley F. New ADA Guidelines: How Much Do You Know? Test Your Knowledge of the Latest Advice on Diabetes Care. Diabetes Self Manag. 2016;33(1):36, 37, 39, 42.
    1. Marcolino MS, Maia JX, Alkmim MB, Boersma E, Ribeiro AL. Telemedicine application in the care of diabetes patients: systematic review and meta-analysis. PLOS ONE. 2013;8(11):e79246 10.1371/journal.pone.0079246
    1. Polidori D, Capuano G, Qiu R. Apparent subadditivity of the efficacy of initial combination treatments for type 2 diabetes is largely explained by the impact of baseline HbA1c on efficacy. DIABETES OBES METAB. 2016;18(4):348–54. 10.1111/dom.12615
    1. Liang X, Wang Q, Yang X, Cao J, Chen J, Mo X, et al. Effect of mobile phone intervention for diabetes on glycaemic control: a meta-analysis. Diabet Med. 2011;28(4):455–63. 10.1111/j.1464-5491.2010.03180.x
    1. Flores MG, Granado-Font E, Ferre-Grau C, Montana-Carreras X. Mobile Phone Apps to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-Analysis. J MED INTERNET RES. 2015;17(11):e253 10.2196/jmir.4836
    1. El-Gayar O, Timsina P, Nawar N, Eid W. Mobile applications for diabetes self-management: status and potential. J Diabetes Sci Technol. 2013;7(1):247–62.
    1. Wesley KM, Fizur PJ. A review of mobile applications to help adolescent and young adult cancer patients. Adolesc Health Med Ther. 2015;6:141–8. 10.2147/AHMT.S69209
    1. Welch G, Balder A, Zagarins S. Telehealth program for type 2 diabetes: usability, satisfaction, and clinical usefulness in an urban community health center. Telemed J E Health. 2015;21(5):395–403. 10.1089/tmj.2014.0069
    1. Pludwinski S, Ahmad F, Wayne N, Ritvo P. Participant experiences in a smartphone-based health coaching intervention for type 2 diabetes: A qualitative inquiry. J TELEMED TELECARE. 2015.
    1. Lyles CR, Harris LT, Le T, Flowers J, Tufano J, Britt D, et al. Qualitative evaluation of a mobile phone and web-based collaborative care intervention for patients with type 2 diabetes. Diabetes Technol Ther. 2011;13(5):563–9. 10.1089/dia.2010.0200
    1. Humble James R T EA R. Use of and interest in mobile health for diabetes self-care in vulnerable populations. J Telemed Telecare OnlineFirst. 2015.

Source: PubMed

3
Se inscrever