Early micro- and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants

Rahul Chandwani, Julia E Kline, Karen Harpster, Jean Tkach, Nehal A Parikh, Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS) Group, Rahul Chandwani, Julia E Kline, Karen Harpster, Jean Tkach, Nehal A Parikh, Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS) Group

Abstract

Infants born very preterm (VPT) are at high risk of motor impairments such as cerebral palsy (CP), and diagnosis can take 2 years. Identifying in vivo determinants of CP could facilitate presymptomatic detection and targeted intervention. Our objectives were to derive micro- and macrostructural measures of sensorimotor white matter tract integrity from diffusion MRI at term-equivalent age, and determine their association with early diagnosis of CP. We enrolled 263 VPT infants (≤32 weeks gestational age) as part of a large prospective cohort study. Diffusion and structural MRI were acquired at term. Following consensus guidelines, we defined early diagnosis of CP based on abnormal structural MRI at term and abnormal neuromotor exam at 3-4 months corrected age. Using Constrained Spherical Deconvolution, we derived a white matter fiber orientation distribution (fOD) for subjects, performed probabilistic whole-brain tractography, and segmented nine sensorimotor tracts of interest. We used the recently developed fixel-based (FB) analysis to compute fiber density (FD), fiber-bundle cross-section (FC), and combined fiber density and cross-section (FDC) for each tract. Of 223 VPT infants with high-quality diffusion MRI data, 14 (6.3%) received an early diagnosis of CP. The cohort's mean (SD) gestational age was 29.4 (2.4) weeks and postmenstrual age at MRI scan was 42.8 (1.3) weeks. FD, FC, and FDC for each sensorimotor tract were significantly associated with early CP diagnosis, with and without adjustment for confounders. Measures of sensorimotor tract integrity enhance our understanding of white matter changes that antecede and potentially contribute to the development of CP in VPT infants.

Keywords: White matter; cerebral palsy; diffusion MRI; neonatology; preterm birth.

Conflict of interest statement

The authors declare no potential conflict of interest.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Figures

FIGURE 1
FIGURE 1
Group fixel template and whole brain tractograph used to segment sensorimotor white matter tracts. (a–c) Group average fixel map showing the fiber orientation distribution (fOD) for all voxels in axial, coronal, and sagittal views, respectively; (d–f) Corresponding whole‐brain tractograph produced from the group average fOD template. Color indicates fiber trajectory. Each tractography figure shows green (anterior to posterior), red (left to right), and blue/purple (superior to inferior) fibers
FIGURE 2
FIGURE 2
Bilateral and unilateral segmentations of sensorimotor tracts. (a) Corticospinal tract in coronal view; (b) superior thalamic radiations (motor) in coronal view; (c) superior thalamic radiations (sensory) in coronal view; (d) posterior thalamic radiations in axial view; (e) corpus callosum in sagittal view; (f) corpus callosum in axial view. All fibers of the STRS and CC are not visible in a single view, as the tracts continue from the thalamus to the postcentral gyrus and from the splenium to the posterior brain, respectively. Color indicates fiber trajectory. Each tractography figure shows green (anterior to posterior), red (left to right), and blue/purple (superior to inferior) fibers

References

    1. Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S., & Parker, D. L. (2001). Analysis of partial volume effects in diffusion‐tensor MRI. Magnetic Resonance in Medicine, 45(5), 770–780. 10.1002/mrm.1105
    1. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 4(3), 316–329. 10.1016/j.nurt.2007.05.011
    1. Auriat, A. M., Borich, M. R., Snow, N. J., Wadden, K. P., & Boyd, L. A. (2015). Comparing a diffusion tensor and non‐tensor approach to white matter fiber tractography in chronic stroke. NeuroImage: Clinical, 7, 771–781. 10.1016/j.nicl.2015.03.007
    1. Barnett, M. L., Tusor, N., Ball, G., Chew, A., Falconer, S., Aljabar, P., … Counsell, S. J. (2017). Exploring the multiple‐hit hypothesis of preterm white matter damage using diffusion MRI. NeuroImage: Clinical, 17, 596–606. 10.1016/j.nicl.2017.11.017
    1. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system ‐ A technical review. NMR in Biomedicine, 15(7–8), 435–455. 10.1002/nbm.782
    1. Benini, R., Dagenais, L., & Shevell, M. I. (2013). Normal imaging in patients with cerebral palsy: What does it tell us? The Journal of Pediatrics, 162(2), 369–374. 10.1016/j.jpeds.2012.07.044
    1. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300. 10.2307/2346101
    1. Berman, J. I., Mukherjee, P., Partridge, S. C., Miller, S. P., Ferriero, D. M., Barkovich, A. J., … Henry, R. G. (2005). Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. NeuroImage, 27(4), 862–871. 10.1016/j.neuroimage.2005.05.018
    1. Ceschin, R., Lee, V. K., Schmithorst, V., & Panigrahy, A. (2015). Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy. NeuroImage: Clinical, 9, 322–337. 10.1016/j.nicl.2015.08.021
    1. Cho, H. K., Jang, S. H., Lee, E., Kim, S. Y., Kim, S., Kwon, Y. H., & Son, S. M. (2013). Diffusion tensor imaging–demonstrated differences between hemiplegic and Diplegic cerebral palsy with symmetric periventricular Leukomalacia. AJNR. American Journal of Neuroradiology, 34(3), 650–654. 10.3174/ajnr.A3272
    1. Datta, A. N., Furrer, M. A., Bernhardt, I., Hüppi, P. S., Borradori‐Tolsa, C., Bucher, H. U., … Group, G.M . (2017). Fidgety movements in infants born very preterm: Predictive value for cerebral palsy in a clinical multicentre setting. Developmental Medicine and Child Neurology, 59(6), 618–624. 10.1111/dmcn.13386
    1. De Bruine, F. T., Van Wezel‐Meijler, G., Leijser, L. M., Steggerda, S. J., Van Den Berg‐Huysmans, A. A., Rijken, M., … Van Der Grond, J. (2013). Tractography of white‐matter tracts in very preterm infants: A 2‐year follow‐up study. Developmental Medicine and Child Neurology, 55(5), 427–433. 10.1111/dmcn.12099
    1. de Vries, L. S., van Haastert, I. C., Benders, M. J., & Groenendaal, F. (2011). Myth: Cerebral palsy cannot be predicted by neonatal brain imaging. Seminars in Fetal and Neonatal Medicine, 16(5), 279–287. 10.1016/j.siny.2011.04.004
    1. Dhollander, T., Clemente, A., Singh, M., Boonstra, F., Civier, O., Duque, J., … Caeyenberghs, K. (2020). Fixel‐based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. 10.31219/
    1. Dubois, J., Benders, M., Borradori‐Tolsa, C., Cachia, A., Lazeyras, F., Ha‐Vinh Leuchter, R., … Hüppi, P. S. (2008). Primary cortical folding in the human newborn: An early marker of later functional development. Brain: A Journal of Neurology, 131(8), 2028–2041. 10.1093/brain/awn137
    1. Einspieler, C., & Prechtl, H. F. (2005). Prechtl's assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Mental Retardation and Developmental Disabilities Research Reviews, 11(1), 61–67. 10.1002/mrdd.20051
    1. Haataja, L., Mercuri, E., Regev, R., Cowan, F., Rutherford, M., Dubowitz, V., & Dubowitz, L. (1999). Optimality score for the neurologic examination of the infant at 12 and 18 months of age. The Journal of Pediatrics, 135(2), 153–161. 10.1016/s0022-3476(99)70016-8
    1. Hadders‐Algra, M. (2014). Early diagnosis and early intervention in cerebral palsy. Frontiers in Neurology, 5(185), 1–13. 10.3389/fneur.2014.00185
    1. Himpens, E., Van den Broeck, C., Oostra, A., Calders, P., & Vanhaesebrouck, P. (2008). Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: A meta‐analytic review. Developmental Medicine and Child Neurology, 50(5), 334–340. 10.1111/j.1469-8749.2008.02047.x
    1. Hintz, S. R., Barnes, P. D., Bulas, D., Slovis, T. L., Finer, N. N., Wrage, L. A., … Higgins, R. D. (2015). Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics, 135(1), e32–e42. 10.1542/peds.2014-0898
    1. Hoon, A. H., Stashinko, E. E., Nagae, L. M., Lin, D. D., Keller, J., Bastian, A., … Johnston, M. V. (2009). Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Developmental Medicine and Child Neurology, 51(9), 697–704. 10.1111/j.1469-8749.2009.03306.x
    1. Hubermann, L., Boychuck, Z., Shevell, M., & Majnemer, A. (2016). Age at referral of children for initial diagnosis of cerebral palsy and rehabilitation: Current practices. Journal of Child Neurology, 31(3), 364–369. 10.1177/0883073815596610
    1. Jensen, E. A., Dysart, K., Gantz, M. G., McDonald, S., Bamat, N. A., Keszler, M., … DeMauro, S. B. (2019). The diagnosis of bronchopulmonary dysplasia in very preterm infants: An evidence‐based approach. American Journal of Respiratory and Critical Care Medicine, 200(6), 751–759. 10.1164/rccm.201812-2348OC
    1. Jeurissen, B., Leemans, A., Jones, D. K., Tournier, J. D., & Sijbers, J. (2011). Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Human Brain Mapping, 32(3), 461–479. 10.1002/hbm.21032
    1. Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K., & Sijbers, J. (2013). Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 34(11), 2747–2766. 10.1002/hbm.22099
    1. Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014). Multi‐tissue constrained spherical deconvolution for improved analysis of multi‐shell diffusion MRI data. NeuroImage, 103, 411–426. 10.1016/j.neuroimage.2014.07.061
    1. Kaur, S., Powell, S., He, L., Pierson, C. R., & Parikh, N. A. (2014). Reliability and repeatability of quantitative tractography methods for mapping structural white matter connectivity in preterm and term infants at term‐equivalent age. PLoS One, 9(1), e85807. 10.1371/journal.pone.0085807
    1. Kidokoro, H., Neil, J. J., & Inder, T. E. (2013). New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR. American Journal of Neuroradiology, 34(11), 2208–2214. 10.3174/ajnr.A3521
    1. Kline, J. E., Illapani, V. S., He, L., Altaye, M., Logan, J. W., & Parikh, N. A. (2020). Early cortical maturation predicts neurodevelopment in very preterm infants. Archives of Disease in Childhood, 105(5), 460–465. 10.1136/archdischild-2019-317466
    1. Kline, J. E., Illapani, V. S., He, L., & Parikh, N. A. (2020). Automated brain morphometric biomarkers from MRI at term predict motor development in very preterm infants. NeuroImage: Clinical, 28, 102475. 10.1016/j.nicl.2020.102475
    1. Leergaard, T. B., White, N. S., De Crespigny, A., Bolstad, I., D'Arceuil, H., Bjaalie, J. G., & Dale, A. M. (2010). Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS One, 5(1), e8595. 10.1371/journal.pone.0008595
    1. Malhotra, A., Sepehrizadeh, T., Dhollander, T., Wright, D., Castillo‐Melendez, M., Sutherland, A. E., … Miller, S. L. (2019). Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NeuroImage: Clinical, 24, 101991. 10.1016/j.nicl.2019.101991
    1. Novak, I., Morgan, C., Adde, L., Blackman, J., Boyd, R. N., Brunstrom‐Hernandez, J., … Badawi, N. (2017). Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatrics, 171(9), 897–907. 10.1001/jamapediatrics.2017.1689
    1. Pannek, K., George, J. M., Boyd, R. N., Colditz, P. B., Rose, S. E., & Fripp, J. (2020). Brain microstructure and morphology of very preterm‐born infants at term equivalent age: Associations with motor and cognitive outcomes at 1 and 2 years. NeuroImage, 221, 117163. 10.1016/j.neuroimage.2020.117163
    1. Pannek, K., Scheck, S. M., Colditz, P. B., Boyd, R. N., & Rose, S. E. (2014). Magnetic resonance diffusion tractography of the preterm infant brain: A systematic review. Developmental Medicine and Child Neurology, 56(2), 113–124. 10.1111/dmcn.12250
    1. Parikh, N. A. (2016). Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Seminars in Perinatology, 40(8), 530–541. 10.1053/j.semperi.2016.09.005
    1. Parikh, N. A. (2018). Are structural magnetic resonance imaging and general movements assessment sufficient for early, accurate diagnosis of cerebral palsy? JAMA Pediatrics, 172(2), 198. 10.1001/jamapediatrics.2017.4812
    1. Parikh, N. A., Harpster, K., He, L., Illapani, V. S., Khalid, F. C., Klebanoff, M. A., … Altaye, M. (2020). Novel diffuse white matter abnormality biomarker at term‐equivalent age enhances prediction of long‐term motor development in very preterm children. Scientific Reports, 10, 15920. 10.1038/s41598-020-72632-0
    1. Parikh, N. A., Hershey, A., & Altaye, M. (2019). Early detection of cerebral palsy using sensorimotor tract biomarkers in very preterm infants. Pediatric Neurology, 98, 53–60. 10.1016/j.pediatrneurol.2019.05.001
    1. Raffelt, D. A., Tournier, J. D., Rose, S., Ridgway, G. R., Henderson, R., Crozier, S., … Connelly, A. (2012). Apparent fibre density: A novel measure for the analysis of diffusion‐weighted magnetic resonance images. NeuroImage, 59(4), 3976–3994. 10.1016/j.neuroimage.2011.10.045
    1. Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R., & Connelly, A. (2017). Investigating white matter fibre density and morphology using fixel‐based analysis. NeuroImage, 144, 58–73. 10.1016/j.neuroimage.2016.09.029
    1. Reijmer, Y. D., Leemans, A., Heringa, S. M., Wielaard, I., Jeurissen, B., Koek, H. L., & Biessels, G. J. (2012). Improved sensitivity to cerebral White matter abnormalities in Alzheimer's Disease with spherical deconvolution based tractography. PLoS One, 7(8), e44074. 10.1371/journal.pone.0044074
    1. Rojas‐Vite, G., Coronado‐Leija, R., Narvaez‐Delgado, O., Ramírez‐Manzanares, A., Marroquín, J. L., Noguez‐Imm, R., … Concha, L. (2019). Histological validation of per‐bundle water diffusion metrics within a region of fiber crossing following axonal degeneration. NeuroImage, 201, 116013. 10.1016/j.neuroimage.2019.116013
    1. Romeo, D. M., Cioni, M., Scoto, M., Mazzone, L., Palermo, F., & Romeo, M. G. (2008). Neuromotor development in infants with cerebral palsy investigated by the Hammersmith Infant Neurological Examination during the first year of age. European Journal of Paediatric Neurology: EJPN, 12(1), 24–31. 10.1016/j.ejpn.2007.05.006
    1. Rose, J., Cahill‐Rowley, K., Vassar, R., Yeom, K. W., Stecher, X., Stevenson, D. K., … Barnea‐Goraly, N. (2015). Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18‐22 mo of age: An MRI and DTI study. Pediatric Research, 78(6), 700–708. 10.1038/pr.2015.157
    1. Rose, J., Mirmiran, M., Butler, E. E., Lin, C. Y., Barnes, P. D., Kermoian, R., & Stevenson, D. K. (2007). Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Developmental Medicine and Child Neurology, 49(10), 745–750. 10.1111/j.1469-8749.2007.00745.x
    1. Rose, J., Vassar, R., Cahill‐Rowley, K., Guzman, X. S., Hintz, S. R., Stevenson, D. K., & Barnea‐Goraly, N. (2014). Neonatal physiological correlates of near‐term brain development on MRI and DTI in very‐low‐birth‐weight preterm infants. Neuroimage: Clinical, 5, 169–177. 10.1016/j.nicl.2014.05.013
    1. Scheck, S. M., Boyd, R. N., & Rose, S. E. (2012). New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: A systematic review. Developmental Medicine and Child Neurology, 54(8), 684–696. 10.1111/j.1469-8749.2012.04332.x
    1. Schilling, K., Gao, Y., Janve, V., Stepniewska, I., Landman, B. A., & Anderson, A. W. (2017). Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? NMR in Biomedicine, 30(12), 1–29. 10.1002/nbm.3787
    1. Spittle, A. J., Cheong, J., Doyle, L. W., Roberts, G., Lee, K. J., Lim, J., … Anderson, P. J. (2011). Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Developmental Medicine and Child Neurology, 53(11), 1000–1006. 10.1111/j.1469-8749.2011.04095.x
    1. Spittle, A. J., Orton, J., Anderson, P. J., Boyd, R., & Doyle, L. W. (2015). Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. The Cochrane Database of Systematic Reviews, 1(11), CD005495. 10.1002/14651858.CD005495.pub4
    1. Tamm, L., Patel, M., Peugh, J., Kline‐Fath, B. M., & Parikh, N. A. (2020). Early brain abnormalities in infants born very preterm predict under‐reactive temperament. Early Human Development, 144, 104985. 10.1016/j.earlhumdev.2020.104985
    1. Teli, R., Hay, M., Hershey, A., Kumar, M., Yin, H., & Parikh, N. A. (2018). Postnatal microstructural developmental trajectory of corpus callosum subregions and relationship to clinical factors in very preterm infants. Scientific Reports, 8(1), 7550. 10.1038/s41598-018-25245-7
    1. Thompson, D. K., Inder, T. E., Faggian, N., Johnston, L., Warfield, S. K., Anderson, P. J., … Egan, G. F. (2011). Characterization of the corpus callosum in very preterm and full‐term infants utilizing MRI. NeuroImage, 55(2), 479–490. 10.1016/j.neuroimage.2010.12.025
    1. Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: Non‐negativity constrained super‐resolved spherical deconvolution. NeuroImage, 35(4), 1459–1472. 10.1016/j.neuroimage.2007.02.016
    1. Tournier, J. D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct estimation of the fiber orientation density function from diffusion‐weighted MRI data using spherical deconvolution. NeuroImage, 23(3), 1176–1185. 10.1016/j.neuroimage.2004.07.037
    1. Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. 10.1002/mrm.22924
    1. Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., … Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137. 10.1016/j.neuroimage.2019.116137
    1. van Kooij, B. J., Van Pul, C., Benders, M. J., Van Haastert, I. C., De Vries, L. S., & Groenendaal, F. (2011). Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants. Pediatric Research, 70(6), 626–632. 10.1203/PDR.0b013e318232a963
    1. Van't Hooft, J., van der Lee, J. H., Opmeer, B. C., Aarnoudse‐Moens, C. S., Leenders, A. G., Mol, B. W., & de Haan, T. R. (2015). Predicting developmental outcomes in premature infants by term equivalent MRI: Systematic review and meta‐analysis. Systematic Reviews, 4, 71. 10.1186/s13643-015-0058-7
    1. Vassar, R. L., Barnea‐Goraly, N., & Rose, J. (2014). Identification of neonatal white matter on DTI: Influence of more inclusive thresholds for atlas segmentation. PLoS One, 9(12), e115426. 10.1371/journal.pone.0115426
    1. Vincer, M. J., Allen, A. C., Joseph, K. S., Stinson, D. A., Scott, H., & Wood, E. (2006). Increasing prevalence of cerebral palsy among very preterm infants: A population‐based study. Pediatrics, 118(6), e1621–e1626. 10.1542/peds.2006-1522
    1. Vogel, J. P., Chawanpaiboon, S., Moller, A. B., Watananirun, K., Bonet, M., & Lumbiganon, P. (2018). The global epidemiology of preterm birth. Best Practice & Research: Clinical Obstetrics & Gynaecology, 52, 3–12. 10.1016/j.bpobgyn.2018.04.003
    1. Volpe, J. J. (2009). The encephalopathy of prematurity—Brain injury and impaired brain development inextricably intertwined. Seminars in Pediatric Neurology, 16(4), 167–178. 10.1016/j.spen.2009.09.005
    1. Wang, Y., Wang, Q., Haldar, J. P., Yeh, F. C., Xie, M., Sun, P., … Song, S. K. (2011). Quantification of increased cellularity during inflammatory demyelination. Brain: A Journal of Neurology, 134(12), 3587–3598. 10.1093/brain/awr307
    1. Williams, J., Lee, K. J., & Anderson, P. J. (2010). Prevalence of motor‐skill impairment in preterm children who do not develop cerebral palsy: A systematic review. Developmental Medicine and Child Neurology, 52(3), 232–237. 10.1111/j.1469-8749.2009.03544.x
    1. Yoshida, S., Hayakawa, K., Oishi, K., Mori, S., Kanda, T., Yamori, Y., … Matsushita, H. (2011). Athetotic and spastic cerebral palsy: Anatomic characterization based on diffusion‐tensor imaging. Radiology, 260(2), 511–520. 10.1148/radiol.11101783
    1. Yoshida, S., Hayakawa, K., Yamamoto, A., Okano, S., Kanda, T., Yamori, Y., … Hirota, H. (2010). Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Developmental Medicine and Child Neurology, 52, 935–940. 10.1111/j.1469-8749.2010.03669.x
    1. Zhang, H., Schneider, T., Wheeler‐Kingshott, C. A., & Alexander, D. C. (2012). NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 61(4), 1000–1016. 10.1016/j.neuroimage.2012.03.072

Source: PubMed

3
Se inscrever