Empagliflozin Reduces the Progression of Hepatic Fibrosis in a Mouse Model and Inhibits the Activation of Hepatic Stellate Cells via the Hippo Signalling Pathway

Yu-Jung Heo, Nami Lee, Sung-E Choi, Ja-Young Jeon, Seung-Jin Han, Dae-Jung Kim, Yup Kang, Kwan-Woo Lee, Hae-Jin Kim, Yu-Jung Heo, Nami Lee, Sung-E Choi, Ja-Young Jeon, Seung-Jin Han, Dae-Jung Kim, Yup Kang, Kwan-Woo Lee, Hae-Jin Kim

Abstract

Hepatic fibrosis is the excessive production and deposition of the extracellular matrix, resulting in the activation of the fibrogenic phenotype of hepatic stellate cells (HSCs). The Hippo/Yes-associated protein (YAP) signalling pathway is a highly conserved kinase cascade that is critical in regulating cell proliferation, differentiation, and survival, and controls stellate cell activation. Empagliflozin, a sodium-glucose cotransporter type-2 inhibitor, is an antidiabetic drug that may prevent fibrotic progression by reducing hepatic steatosis and inflammation. However, little is known about its mechanism of action in liver fibrosis. In this study, we used male C57 BL/6 J mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) as a model for hepatic fibrosis. For 5 weeks, the mice received either a vehicle or empagliflozin based on their assigned group. Empagliflozin attenuated CDAHFD-induced liver fibrosis. Thereafter, we identified the Hippo pathway, along with its effector, YAP, as a key pathway in the mouse liver. Hippo signalling is inactivated in the fibrotic liver, but empagliflozin treatment activated Hippo signalling and decreased YAP activity. In addition, empagliflozin downregulated the expression of pro-fibrogenic genes and activated Hippo signalling in HSCs. We identified a mechanism by which empagliflozin ameliorates liver fibrosis.

Keywords: Hippo signalling pathway; empagliflozin; hepatic fibrosis; hepatic stellate cells.

Conflict of interest statement

All authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Effects of empagliflozin on hepatic fibrosis in CDAHFD-induced mice. The mice were treated with the control chow diet (CD), choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), or CDAHFD with empagliflozin (EMPA) treatment. (a) The liver histology was studied via macroscopic morphological examination, H&E staining, and Sirius Red staining. α-SMA signals were visualised via immunohistochemistry. (b) Fibrosis grades in the different groups. (c) α-SMA, fibronectin, and connective tissue growth factor (cTGF) signals were examined and quantified using Western blot. β-actin served as the loading control. (d) Relative expression of genes related to fibrosis was determined via RT-PCR. * p < 0.05, ** p < 0.01, and *** p < 0.001 in the comparisons of the CD-fed mice with the CDAHFD-fed mice. † p < 0.05, †† p < 0.01, and ††† p < 0.001 in the comparisons of the CDAHFD-fed mice with the EMPA treatment groups. PV: portal vein; CV: central vein.
Figure 2
Figure 2
Empagliflozin downregulates pro-fibrogenic markers and decreases proliferation in LX-2 cells. (a) Collagen 1 α1, α-SMA, fibronectin, and cTGF were assayed by Western blotting using specific antibodies. The maximum control phosphoprotein intensity was set to 100%, and relative test intensities were calculated. (b) The relative expression of α-SMA, Collagen 1 α1, and TGF-β was determined via real-time polymerase chain reaction (RT-PCR). (c) The cell proliferation marker, proliferating cell nuclear antigen (PCNA), was determined via RT-PCR. Data are expressed as means ± standard deviation of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the control.
Figure 3
Figure 3
Effect of EMPA on Hippo signalling pathway in CDAHFD-induced mice. (a) Western blot of mice liver protein extracts with the indicated antibodies. (b) Quantitation and normalisation of phospho-specific signal to total protein or total protein to β-actin from a. (c) The relative expression of cyr61, cTGF, and AREG was determined via real-time PCR. ** p < 0.01, and *** p < 0.001 in the comparisons of the CD-fed mice with the CDAHFD-fed mice. † p < 0.05, †† p < 0.01, and ††† p < 0.001 in the comparisons of the CDAHFD-fed mice with the EMPA treatment groups.
Figure 4
Figure 4
Empagliflozin decreased Yes-associated protein (YAP) expression in LX-2 cells. (a) The representative protein expression of YAP and phospho-YAP was determined using Western blot. (b) Quantitation and normalisation of phospho-YAP to total YAP or total YAP to β-actin from a. (c) The relative expression of cyr61, cTGF, and AREG was determined via RT-PCR. Data are expressed as means ± standard deviation of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the control.
Figure 5
Figure 5
Empagliflozin regulates Hippo signalling in LX-2 cells. (a) Following different doses of EMPA treatment in LX-2 cells for 12 h, the protein levels of MST1, MST2, phospho-MST1/2, MOB1, phospho-MOB1, LATS1, and phospho-LATS1 were evaluated via Western blot. (b) Statistical analysis on the relative expression of the Hippo pathway in LX-2 cells. Data are expressed as means ± standard deviation of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the control.

References

    1. Friedman S.L. Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2010;7:425–436. doi: 10.1038/nrgastro.2010.97.
    1. Bataller R., Brenner D.A. Liver fibrosis. J. Clin. Investig. 2005;115:209–218. doi: 10.1172/JCI24282.
    1. Friedman S.L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000;275:2247–2250. doi: 10.1074/jbc.275.4.2247.
    1. Xu L., Hui A.Y., Albanis E., Arthur M.J., O’Byrne S.M., Blaner W.S., Mukherjee P., Friedman S.L., Eng F.J. Human hepatic stellate cell lines, LX-1 and LX-2: New tools for analysis of hepatic fibrosis. Gut. 2005;54:142–151. doi: 10.1136/gut.2004.042127.
    1. Zhang K., Chang Y., Shi Z., Han X., Han Y., Yao Q., Hu Z., Cui H., Zheng L., Han T., et al. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation. Sci. Rep. 2016;6:30029. doi: 10.1038/srep30029.
    1. Pan D. The hippo signaling pathway in development and cancer. Dev. Cell. 2010;19:491–505. doi: 10.1016/j.devcel.2010.09.011.
    1. Boopathy G.T.K., Hong W. Role of hippo pathway-YAP/TAZ signaling in angiogenesis. Front. Cell Dev. Biol. 2019;7:49. doi: 10.3389/fcell.2019.00049.
    1. Qin F., Tian J., Zhou D., Chen L. Mst1 and Mst2 kinases: Regulations and diseases. Cell Biosci. 2013;3:31. doi: 10.1186/2045-3701-3-31.
    1. Yamauchi T., Moroishi T. Hippo Pathway in Mammalian Adaptive Immune System. Cells. 2019;8:398. doi: 10.3390/cells8050398.
    1. Zhang N., Bai H., David K.K., Dong J., Zheng Y., Cai J., Giovannini M., Liu P., Anders R.A., Pan D. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell. 2010;19:27–38. doi: 10.1016/j.devcel.2010.06.015.
    1. Zhou D., Zhang Y., Wu H., Barry E., Yin Y., Lawrence E., Dawson D., Willis J.E., Markowitz S.D., Camargo F.D., et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl. Acad. Sci. USA. 2011;108:E1312–E1320. doi: 10.1073/pnas.1110428108.
    1. Zhao B., Li L., Lei Q., Guan K.L. The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev. 2010;24:862–874. doi: 10.1101/gad.1909210.
    1. Lei Q.Y., Zhang H., Zhao B., Zha Z.Y., Bai F., Pei X.H., Zhao S., Xiong Y., Guan K.L. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 2008;28:2426–2436. doi: 10.1128/MCB.01874-07.
    1. Cairns L., Tran T., Kavran J.M. Structural insights into the regulation of hippo signaling. ACS Chem. Biol. 2017;12:601–610. doi: 10.1021/acschembio.6b01058.
    1. Kim M.K., Jang J.W., Bae S.C. DNA binding partners of YAP/TAZ. BMB Rep. 2018;51:126–133. doi: 10.5483/BMBRep.2018.51.3.015.
    1. Mannaerts I., Leite S.B., Verhulst S., Claerhout S., Eysackers N., Thoen L.F., Hoorens A., Reynaert H., Halder G., van Grunsven L.A. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 2015;63:679–688. doi: 10.1016/j.jhep.2015.04.011.
    1. Kinoshita T., Shimoda M., Nakashima K., Fushimi Y., Hirata Y., Tanabe A., Tatsumi F., Hirukawa H., Sanada J., Kohara K., et al. Comparison of the effects of three kinds of glucose-lowering drugs on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, open-label, three-arm, active control study. J. Diabetes Investig. 2020;11:1612–1622. doi: 10.1111/jdi.13279.
    1. Gharaibeh N.E., Rahhal M.N., Rahimi L., Ismail-Beigi F. SGLT-2 inhibitors as promising therapeutics for non-alcoholic fatty liver disease: Pathophysiology, clinical outcomes, and future directions. Diabetes Metab. Syndr. Obes. 2019;12:1001–1012. doi: 10.2147/DMSO.S212715.
    1. Chehrehgosha H., Sohrabi M.R., Ismail-Beigi F., Malek M., Reza Babaei M., Zamani F., Ajdarkosh H., Khoonsari M., Fallah A.E., Khamseh M.E. Empagliflozin improves liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease and type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Ther. 2021;12:843–861. doi: 10.1007/s13300-021-01011-3.
    1. Li T., Fang T., Xu L., Liu X., Li X., Xue M., Yu X., Sun B., Chen L. Empagliflozin Alleviates Hepatic Steatosis by Activating the AMPK-TET2-Autophagy Pathway in vivo and in vitro. Front. Pharmacol. 2020;11:622153. doi: 10.3389/fphar.2020.622153.
    1. Lee N., Heo Y.J., Choi S.E., Jeon J.Y., Han S.J., Kim D.J., Kang Y., Lee K.W., Kim H.J. Anti-inflammatory effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 signalling pathways. J. Immunol. Res. 2021;2021:9944880. doi: 10.1155/2021/9944880.
    1. Lee N., Heo Y.J., Choi S.E., Jeon J.Y., Han S.J., Kim D.J., Kang Y., Lee K.W., Kim H.J. Hepatoprotective effects of gemigliptin and empagliflozin in a murine model of diet-induced non-alcoholic fatty liver disease. Biochem. Biophys. Res. Commun. 2022;588:154–160. doi: 10.1016/j.bbrc.2021.12.065.
    1. Kern M., Klöting N., Mark M., Mayoux E., Klein T., Blüher M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism. 2016;65:114–123. doi: 10.1016/j.metabol.2015.10.010.
    1. Yu J., Marsh S., Hu J., Feng W., Wu C. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol. Res. Pract. 2016;2016:2862173. doi: 10.1155/2016/2862173.
    1. Hoffmann C., Djerir N.E.H., Danckaert A., Fernandes J., Roux P., Charrueau C., Lachagès A.M., Charlotte F., Brocheriou I., Clément K., et al. Hepatic Stellate Cell Hypertrophy Is Associated with Metabolic Liver Fibrosis. Sci. Rep. 2020;10:3850. doi: 10.1038/s41598-020-60615-0.
    1. Rokugawa T., Konishi H., Ito M., Iimori H., Nagai R., Shimosegawa E., Hatazawa J., Abe K. Evaluation of Hepatic Integrin Avβ3 Expression in Non-Alcoholic Steatohepatitis (NASH) Model Mouse by 18F-FPP-RGD2 PET. EJNMMI Res. 2018;8:40. doi: 10.1186/s13550-018-0394-4.
    1. Ikawa-Yoshida A., Matsuo S., Kato A., Ohmori Y., Higashida A., Kaneko E., Matsumoto M. Hepatocellular Carcinoma in a Mouse Model Fed a Choline-Deficient, L-Amino Acid-Defined, High-Fat Diet. Int. J. Exp. Pathol. 2017;98:221–233. doi: 10.1111/iep.12240.
    1. Mooring M., Fowl B.H., Lum S.Z.C., Liu Y., Yao K., Softic S., Kirchner R., Bernstein A., Singhi A.D., Jay D.G., et al. Hepatocyte stress increases expression of yes-associated protein and transcriptional coactivator with PDZ-binding motif in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology. 2020;1:1813–1830. doi: 10.1002/hep.30928.
    1. Salloum S., Jeyarajan A.J., Kruger A.J., Holmes J.A., Shao T., Sojoodi M., Kim M.H., Zhuo Z., Shroff S.G., Kassa A., et al. Fatty acids activate the transcriptional coactivator YAP1 to promote liver fibrosis via p38 mitogen-activated protein kinase. Cell. Mol. Gastroenterol. Hepatol. 2021;12:1297–1310. doi: 10.1016/j.jcmgh.2021.06.003.
    1. Cuypers J., Mathieu C., Benhalima K. SGLT2-inhibitors: A novel class for the treatment of type 2 diabetes introduction of SGLT2-inhibitors in clinical practice. Acta Clin. Belg. 2013;68:287–293. doi: 10.2143/ACB.3349.
    1. Hsia D.S., Grove O., Cefalu W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017;24:73–79. doi: 10.1097/MED.0000000000000311.
    1. Dwinata M., Putera D.D., Hasan I., Raharjo M. SGLT2 inhibitors for improving hepatic fibrosis and steatosis in non-alcoholic fatty liver disease complicated with type 2 diabetes mellitus: A systematic review. Clin. Exp. Hepatol. 2020;6:339–346. doi: 10.5114/ceh.2020.102173.
    1. Kim J.W., Lee Y.J., You Y.H., Moon M.K., Yoon K.H., Ahn Y.B., Ko S.H. Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. J. Cell. Biochem. 2018;12:8534–8546. doi: 10.1002/jcb.28141.
    1. Wang X., Zheng Z., Caviglia J.M., Corey K.E., Herfel T.M., Cai B., Masia R., Chung R.T., Lefkowitch J.H., Schwabe R.F., et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016;24:848–862. doi: 10.1016/j.cmet.2016.09.016.
    1. Wang C., Zhang L., He Q., Feng X., Zhu J., Xu Z., Wang X., Chen F., Li X., Dong J. Differences in Yes-associated protein and mRNA levels in regenerating liver and hepatocellular carcinoma. Mol. Med. Rep. 2012;5:410–414. doi: 10.3892/mmr.2011.640.
    1. Wang S., Zhou L., Ling L., Meng X., Chu F., Zhang S., Zhou F. The Crosstalk Between Hippo-YAP Pathway and Innate Immunity. Front. Immunol. 2020;11:323. doi: 10.3389/fimmu.2020.00323.
    1. Li N., Yamamoto G., Fuji H., Kisseleva T. Interleukin-17 in Liver Disease Pathogenesis. Semin Liver Dis. 2021;41:507–515. doi: 10.1055/s-0041-1730926.
    1. Tarantino G., Costantini S., Finelli C., Capone F., Guerriero E., La Sala N., Gioia S., Castello G. Is serum Interleukin-17 associated with early atherosclerosis in obese patients? J. Transl. Med. 2014;12:214. doi: 10.1186/s12967-014-0214-1.
    1. Friedman S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008;88:125–172. doi: 10.1152/physrev.00013.2007.
    1. Farooqi H.M.U., Kang B., Khalid M.A.U., Salih A.R.C., Hyun K., Park S.H., Huh D., Choi K.H. Real-time monitoring of liver fibrosis through embedded sensors in a microphysiological system. Nano Converg. 2021;8:3. doi: 10.1186/s40580-021-00253-y.

Source: PubMed

3
Se inscrever