Spasticity and its contribution to hypertonia in cerebral palsy

Lynn Bar-On, Guy Molenaers, Erwin Aertbeliën, Anja Van Campenhout, Hilde Feys, Bart Nuttin, Kaat Desloovere, Lynn Bar-On, Guy Molenaers, Erwin Aertbeliën, Anja Van Campenhout, Hilde Feys, Bart Nuttin, Kaat Desloovere

Abstract

Spasticity is considered an important neural contributor to muscle hypertonia in children with cerebral palsy (CP). It is most often treated with antispasticity medication, such as Botulinum Toxin-A. However, treatment response is highly variable. Part of this variability may be due to the inability of clinical tests to differentiate between the neural (e.g., spasticity) and nonneural (e.g., soft tissue properties) contributions to hypertonia, leading to the terms "spasticity" and "hypertonia" often being used interchangeably. Recent advancements in instrumented spasticity assessments offer objective measurement methods for distinction and quantification of hypertonia components. These methods can be applied in clinical settings and their results used to fine-tune and improve treatment. We reviewed current advancements and new insights with respect to quantifying spasticity and its contribution to muscle hypertonia in children with CP. First, we revisit what is known about spasticity in children with CP, including the various definitions and its pathophysiology. Second, we summarize the state of the art on instrumented spasticity assessment in CP and review the parameters developed to quantify the neural and nonneural components of hypertonia. Lastly, the impact these quantitative parameters have on clinical decision-making is considered and recommendations for future clinical and research investigations are discussed.

Figures

Figure 1
Figure 1
Neural and nonneural mechanisms contributing to increased resistance to passive motion in an upper motor neuron syndrome.
Figure 2
Figure 2
The major excitatory (red lines), inhibitory (blue lines), and processing (black lines) pathways involved in the reflex regulation contributing to normal trunk and limb muscle tone. Pathways numbered (1) and (2) travel first through interneurons before synapsing with alpha- (α-) motor neurons. GTO: Golgi tendon organ. *Some extrapyramidal tracts (not shown in this figure) also contribute to the maintenance of normal muscle tone and not all pathways shown are necessarily involved in increased stretch reflex due to spasticity.

References

    1. Sinkjær T., Andersen J. B., Nielsen J. F., Hansen H. J. Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clinical Neurophysiology. 1999;110(5):951–959. doi: 10.1016/S1388-2457(99)00034-6.
    1. Nielsen J. B., Petersen N. T., Crone C., Sinkjaer T. Stretch reflex regulation in healthy subjects and patients with spasticity. Neuromodulation. 2005;8(1):49–57. doi: 10.1111/j.1094-7159.2005.05220.x.
    1. Lance J. Symposium synopsis. In: Feldman R. G., Young R. R., Koella W. P., editors. Spasticity: Disordered Motor Control. Chicago, Ill, USA: Yearbook Medical; 1980. pp. 485–494.
    1. Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Developmental Medicine and Child Neurology. 2000;42(12):816–824. doi: 10.1017/s0012162200001511.
    1. Sanger T. D., Delgado M. R., Gaebler-Spira D., Hallett M., Mink J. W. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111(1):e89–e97. doi: 10.1542/peds.111.1.e89.
    1. Fleuren J. F. M., Voerman G. E., Erren-Wolters C. V., et al. Stop using the Ashworth Scale for the assessment of spasticity. Journal of Neurology, Neurosurgery and Psychiatry. 2010;81(1):46–52. doi: 10.1136/jnnp.2009.177071.
    1. Lieber R. L. Skeletal Muscle Structure, Function, and Plasticity. Lippincott Williams & Wilkins; 2010. Skeletal muscle adaptation to spasticity; pp. 271–289.
    1. Bar-On L., Aertbeliën E., Molenaers G., Dan B., Desloovere K. Manually controlled instrumented spasticity assessments: a systematic review of psychometric properties. Developmental Medicine & Child Neurology. 2014;56(10):932–950. doi: 10.1111/dmcn.12419.
    1. Flamand V. H., Massé-Alarie H., Schneider C. Psychometric evidence of spasticity measurement tools in cerebral palsy children and adolescents: a systematic review. Journal of Rehabilitation Medicine. 2013;45(1):14–23. doi: 10.2340/16501977-1082.
    1. Sakzewski L., Ziviani J., Boyd R. Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123(6):e1111–e1122. doi: 10.1542/peds.2008-3335.
    1. Barnes M. P. Upper Motor Neuone Syndrome and Spasticity: Clinical Management and Neurophysiology. Cambridge, UK: Cambridge University Press; 2008.
    1. Klingels K., Demeyere I., Jaspers E., et al. Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. European Journal of Paediatric Neurology. 2012;16(5):475–484. doi: 10.1016/j.ejpn.2011.12.008.
    1. Gage J. R. The Identification and Treatment of Gait Problems in Cerebral Palsy. Mac Keith Press; 2009.
    1. Morrell D. S., Pearson J. M., Sauser D. D. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. Radiographics. 2002;22(2):257–268. doi: 10.1148/radiographics.22.2.g02mr19257.
    1. Burke D., Wissel J., Donnan G. A. Pathophysiology of spasticity in stroke. Neurology. 2013;80(3) supplement 2:S20–S26.
    1. Kamper D. G., Schmit B. D., Rymer W. Z. Effect of muscle biomechanics on the quantification of spasticity. Annals of Biomedical Engineering. 2001;29(12):1122–1134. doi: 10.1114/1.1424918.
    1. Sheean G. Neurophysiology of spasticity. In: Barnes M., Johnson G., editors. Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology. Cambridge, UK: Cambridge University Press; 2008. pp. 9–54.
    1. Malhotra S., Pandyan A. D., Day C. R., Jones P. W., Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clinical Rehabilitation. 2009;23(7):651–658. doi: 10.1177/0269215508101747.
    1. Pandyan A. D., Gregoric M., Barnes M. P., et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disability and Rehabilitation. 2005;27(1-2):2–6. doi: 10.1080/09638280400014576.
    1. Dietz V., Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. The Lancet Neurology. 2007;6(8):725–733. doi: 10.1016/s1474-4422(07)70193-x.
    1. Nielsen J., Crone C., Sinkjaer T., Toft E., Hultborn H. Central control of reciprocal inhibition during fictive dorsiflexion in man. Experimental Brain Research. 1995;104(1):99–106.
    1. Faist M., Mazevet D., Dietz V., Pierrot-Deseilligny E. A quantitative assessment of presynaptic inhibition of Ia afferents in spastics: differences in hemiplegics and paraplegics. Brain. 1994;117(6):1449–1455. doi: 10.1093/brain/117.6.1449.
    1. Mukherjee A., Chakravarty A. Spasticity mechanisms—for the clinician. Frontiers in Neurology. 2010;1, article 149 doi: 10.3389/fneur.2010.00149.
    1. Bhagchandani N., Schindler-Ivens S. Reciprocal inhibition post-stroke is related to reflex excitability and movement ability. Clinical Neurophysiology. 2012;123(11):2239–2246. doi: 10.1016/j.clinph.2012.04.023.
    1. Hornby T. G., Rymer W. Z., Benz E. N., Schmit B. D. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials? Journal of Neurophysiology. 2003;89(1):416–426. doi: 10.1152/jn.00979.2001.
    1. McPherson J. G., Ellis M. D., Heckman C. J., Dewald J. P. A. Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke. Journal of Neurophysiology. 2008;100(6):3236–3243. doi: 10.1152/jn.90563.2008.
    1. Gracies J.-M. Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle & Nerve. 2005;31(5):552–571. doi: 10.1002/mus.20285.
    1. Thilmann A. F., Fellows S. J., Garms E. The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain. 1991;114(1A):233–244.
    1. Gracies J.-M. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle and Nerve. 2005;31(5):535–551. doi: 10.1002/mus.20284.
    1. Bar-On L., Aertbeliën E., Wambacq H., et al. A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait and Posture. 2013;38(1):141–147. doi: 10.1016/j.gaitpost.2012.11.003.
    1. Gäverth J., Eliasson A.-C., Kullander K., Borg J., Lindberg P. G., Forssberg H. Sensitivity of the NeuroFlexor method to measure change in spasticity after treatment with botulinum toxin A in wrist and finger muscles. Journal of Rehabilitation Medicine. 2014;46(7):629–634. doi: 10.2340/16501977-1824.
    1. Calota A., Levin M. F. Tonic stretch reflex threshold as a measure of spasticity: implications for clinical practice. Topics in Stroke Rehabilitation. 2009;16(3):177–188. doi: 10.1310/tsr1603-177.
    1. Haugh A. B., Pandyan A. D., Johnson G. R. A systematic review of the Tardieu Scale for the measurement of spasticity. Disability and Rehabilitation. 2006;28(15):899–907. doi: 10.1080/09638280500404305.
    1. Bar-On L., van Campenhout A., Desloovere K., et al. Is an instrumented spasticity assessment an improvement over clinical spasticity scales in assessing and predicting the response to integrated botulinum toxin type A treatment in children with cerebral palsy? Archives of Physical Medicine and Rehabilitation. 2014;95(3):515–523. doi: 10.1016/j.apmr.2013.08.010.
    1. Biering-Sørensen F., Nielsen J. B., Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708–722. doi: 10.1038/sj.sc.3101928.
    1. Pandyan A. D., Price C. I. M., Rodgers H., Barnes M. P., Johnson G. R. Biomechanical examination of a commonly used measure of spasticity. Clinical Biomechanics. 2001;16(10):859–865. doi: 10.1016/s0268-0033(01)00084-5.
    1. Sinkjær T., Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117(2):355–363. doi: 10.1093/brain/117.2.355.
    1. Galiana L., Fung J., Kearney R. Identification of intrinsic and reflex ankle stiffness components in stroke patients. Experimental Brain Research. 2005;165(4):422–434. doi: 10.1007/s00221-005-2320-z.
    1. Voerman G. E., Gregorič M., Hermens H. J. Neurophysiological methods for the assessment of spasticity: the Hoffman reflex, the tendon reflex, and the stretch reflex. Disability and Rehabilitation. 2005;27(1-2):33–68. doi: 10.1080/09638280400014600.
    1. Wood D. E., Burridge J. H., van Wijck F. M., et al. Biomechanical approaches applied to the lower and upper limb for the measurement of spasticity: a systematic review of the literature. Disability and Rehabilitation. 2005;27(1-2):19–32. doi: 10.1080/09638280400014683.
    1. Burridge J. H., Wood D. E., Hermens H. J., et al. Theoretical and methodological considerations in the measurement of spasticity. Disability and Rehabilitation. 2005;27(1-2):69–80. doi: 10.1080/09638280400014592.
    1. de Vlugt E., de Groot J. H., Schenkeveld K. E., Arendzen J. H., van der Helm F. C., Meskers C. G. The relation between neuromechanical parameters and Ashworth score in stroke patients. Journal of NeuroEngineering and Rehabilitation. 2010;7(1, article 35) doi: 10.1186/1743-0003-7-35.
    1. de Gooijer-van de Groep K. L., de Vlugt E., de Groot J. H., et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. Journal of NeuroEngineering and Rehabilitation. 2013;10(1, article 81) doi: 10.1186/1743-0003-10-81.
    1. Pandyan A. D., van Wijck F. M. J., Stark S., Vuadens P., Johnson G. R., Barnes M. P. The construct validity of a spasticity measurement device for clinical practice: an alternative to the Ashworth scales. Disability and Rehabilitation. 2006;28(9):579–585. doi: 10.1080/09638280500242390.
    1. Wu Y.-N., Ren Y., Goldsmith A., Gaebler D., Liu S. Q., Zhang L.-Q. Characterization of spasticity in cerebral palsy: dependence of catch angle on velocity. Developmental Medicine& Child Neurology. 2010;52(6):563–569. doi: 10.1111/j.1469-8749.2009.03602.x.
    1. van den Noort J. C., Scholtes V. A., Becher J. G., Harlaar J. Evaluation of the catch in spasticity assessment in children with cerebral palsy. Archives of Physical Medicine and Rehabilitation. 2010;91(4):615–623. doi: 10.1016/j.apmr.2009.12.022.
    1. Bar-On L., Aertbeliën E., Molenaers G., et al. Comprehensive quantification of the spastic catch in children with cerebral palsy. Research in Developmental Disabilities. 2013;34(1):386–396.
    1. Bar-On L., Aertbeliën E., Molenaers G., et al. Instrumented assessment of the effect of Botulinum Toxin-A in the medial hamstrings in children with cerebral palsy. Gait and Posture. 2014;39(1):17–22. doi: 10.1016/j.gaitpost.2013.05.018.
    1. Bar-On L., Aertbeliën E., Molenaers G., Desloovere K. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy. PLoS ONE. 2014;9(3):p. e91759. doi: 10.1371/journal.pone.0091759.
    1. Bar-On L., Desloovere K., Molenaers G., Harlaar J., Kindt T., Aertbeliën E. Identification of the neural component of torque during manually-applied spasticity assessments in children with cerebral palsy. Gait & Posture. 2014;40(3):346–351. doi: 10.1016/j.gaitpost.2014.04.207.
    1. Wu Y.-N., Ren Y., Goldsmith A., Gaebler D., Liu S. Q., Zhang L.-Q. Characterization of spasticity in cerebral palsy: dependence of catch angle on velocity. Developmental Medicine & Child Neurology. 2010;52(6):563–569. doi: 10.1111/j.1469-8749.2009.03602.x.
    1. Chung S. G., van Rey E., Bai Z., Rymer W. Z., Roth E. J., Zhang L.-Q. Separate quantification of reflex and nonreflex components of spastic hypertonia in chronic hemiparesis. Archives of Physical Medicine and Rehabilitation. 2008;89(4):700–710. doi: 10.1016/j.apmr.2007.09.051.
    1. Lindberg P. G., Gäverth J., Islam M., Fagergren A., Borg J., Forssberg H. Validation of a new biomechanical model to measure muscle tone in spastic muscles. Neurorehabilitation and Neural Repair. 2011;25(7):617–625. doi: 10.1177/1545968311403494.
    1. Willerslev-Olsen M., Lorentzen J., Sinkjær T., Nielsen J. B. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Developmental Medicine and Child Neurology. 2013;55(7):617–623. doi: 10.1111/dmcn.12124.
    1. Harlaar J., Becher J. G., Snijders C. J., Lankhorst G. J. Passive stiffness characteristics of ankle plantar flexors in hemiplegia. Clinical Biomechanics. 2000;15(4):261–270. doi: 10.1016/S0268-0033(99)00069-8.
    1. Meyer G. A., McCulloch A. D., Lieber R. L. A nonlinear model of passive muscle viscosity. Journal of Biomechanical Engineering. 2011;133(9) doi: 10.1115/1.4004993.091007
    1. Bar-On L., Aertbeliën E., Molenaers G., Desloovere K. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0091759.e91759
    1. Musampa N. K., Mathieu P. A., Levin M. F. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity. Experimental Brain Research. 2007;181(4):579–593. doi: 10.1007/s00221-007-0956-6.
    1. Meinders M., Price R., Lehmann J. F., Questad K. A. The stretch reflex response in the normal and spastic ankle: effect of ankle position. Archives of Physical Medicine and Rehabilitation. 1996;77(5):487–492. doi: 10.1016/s0003-9993(96)90038-6.
    1. Barrett R. S., Lichtwark G. A. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Developmental Medicine and Child Neurology. 2010;52(9):794–804. doi: 10.1111/j.1469-8749.2010.03686.x.
    1. Gough M., Shortland A. P. Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation? Developmental Medicine and Child Neurology. 2012;54(6):495–499. doi: 10.1111/j.1469-8749.2012.04229.x.
    1. Smith L. R., Lee K. S., Ward S. R., Chambers H. G., Lieber R. L. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. Journal of Physiology. 2011;589(10):2625–2639. doi: 10.1113/jphysiol.2010.203364.
    1. Barber L., Barrett R., Lichtwark G. Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy. Journal of Biomechanics. 2011;44(13):2496–2500. doi: 10.1016/j.jbiomech.2011.06.008.
    1. Švehlík M., Leistritz L., Kraus T., Zwick E. B., Steinwender G., Linhart W. E. The growth and the development of gastro-soleus contracture in cerebral palsy. Gait & Posture. 2013;38, supplement 1:p. S12. doi: 10.1016/j.gaitpost.2013.07.032.
    1. de Vlugt E., de Groot J. H., Wisman W. H. J., Meskers C. G. M. Clonus is explained from increased reflex gain and enlarged tissue viscoelasticity. Journal of Biomechanics. 2012;45(1):148–155. doi: 10.1016/j.jbiomech.2011.09.023.
    1. Hägglund G., Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskeletal Disorders. 2008;9, article 150 doi: 10.1186/1471-2474-9-150.
    1. Fry N. R., Gough M., Shortland A. P. Three-dimensional realisation of muscle morphology and architecture using ultrasound. Gait and Posture. 2004;20(2):177–182. doi: 10.1016/j.gaitpost.2003.08.010.
    1. Barber L., Barrett R., Lichtwark G. Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle. Journal of Biomechanics. 2009;42(9):1313–1319. doi: 10.1016/j.jbiomech.2009.03.005.
    1. Matthiasdottir S., Hahn M., Yaraskavitch M., Herzog W. Muscle and fascicle excursion in children with cerebral palsy. Clinical Biomechanics. 2014;29(4):458–462. doi: 10.1016/j.clinbiomech.2014.01.002.
    1. Willerslev-Olsen M., Andersen J. B., Sinkjaer T., Nielsen J. B. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. Journal of Neurophysiology. 2014;111(4):746–754. doi: 10.1152/jn.00372.2013.
    1. Toft E., Sinkjaer T., Andreassen S., Larsen K. Mechanical and electromyographic responses to stretch of the human ankle extensors. Journal of Neurophysiology. 1991;65(6):1402–1410.
    1. Crenna P. Spasticity and “spastic” gait in children with cerebral palsy. Neuroscience & Biobehavioral Reviews. 1998;22(4):571–578. doi: 10.1016/s0149-7634(97)00046-8.
    1. Lamontagne A., Malouin F., Richards C. L. Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Archives of Physical Medicine and Rehabilitation. 2001;82(12):1696–1704. doi: 10.1053/apmr.2001.26810.
    1. van der Krogt M. M., Doorenbosch C. A. M., Becher J. G., Harlaar J. Dynamic spasticity of plantar flexor muscles in cerebral palsy gait. Journal of Rehabilitation Medicine. 2010;42(7):656–663. doi: 10.2340/16501977-0579.
    1. Van Campenhout A., Bar-On L., Aertbeliën E., Huenaerts C., Molenaers G., Desloovere K. Can we unmask features of spasticity during gait in children with cerebral palsy by increasing their walking velocity? Gait Posture. 2014;39(3):953–957.
    1. Bar-On L., Molenaers G., Aertbeliën E., Monari D., Feys H., Desloovere K. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Research in Developmental Disabilities. 2014;35(12):3354–3364. doi: 10.1016/j.ridd.2014.07.053.
    1. Marsden J., Ramdharry G., Stevenson V., Thompson A. Muscle paresis and passive stiffness: key determinants in limiting function in Hereditary and Sporadic Spastic Paraparesis. Gait and Posture. 2012;35(2):266–271. doi: 10.1016/j.gaitpost.2011.09.018.
    1. Jonkers I., Stewart C., Desloovere K., Molenaers G., Spaepen A. Musculo-tendon length and lengthening velocity of rectus femoris in stiff knee gait. Gait and Posture. 2006;23(2):222–229. doi: 10.1016/j.gaitpost.2005.02.005.
    1. Wren T. A. L., Cheatwood A. P., Rethlefsen S. A., Hara R., Perez F. J., Kay R. M. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. Journal of Pediatric Orthopaedics. 2010;30(5):479–484. doi: 10.1097/bpo.0b013e3181e00c80.
    1. van der Krogt M. M., Doorenbosch C. A. M., Becher J. G., Harlaar J. Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait. Clinical Biomechanics. 2009;24(5):422–428. doi: 10.1016/j.clinbiomech.2009.02.006.
    1. Lin J.-P. The contribution of spasticity to the movement disorder of cerebral palsy using pathway analysis: does spasticity matter? Developmental Medicine & Child Neurology. 2011;53(1):7–9. doi: 10.1111/j.1469-8749.2010.03843.x.

Source: PubMed

3
Se inscrever