A systematic review of neurological symptoms and complications of COVID-19

Xiangliang Chen, Sarah Laurent, Oezguer A Onur, Nina N Kleineberg, Gereon R Fink, Finja Schweitzer, Clemens Warnke, Xiangliang Chen, Sarah Laurent, Oezguer A Onur, Nina N Kleineberg, Gereon R Fink, Finja Schweitzer, Clemens Warnke

Abstract

Objective: To study the frequency of neurological symptoms and complications in COVID-19 patients in a systematic review of the literature.

Methods: Relevant studies were identified through electronic explorations of PubMed, medRxiv, and bioRxiv. Besides, three Chinese databases were searched. A snowballing method searching the bibliographies of the retrieved references was applied to identify potentially relevant articles. Articles published within 1 year prior to April 20th, 2020, were screened with no language restriction imposed. Databases were searched for terms related to SARS-CoV-2/COVID-19 and neurological manifestations, using a pre-established protocol registered on the International Prospective Register of Systematic Reviews database (ID: CRD42020187994).

Results: A total of 2441 articles were screened for relevant content, of which 92 full-text publications were included in the analyses of neurological manifestations of COVID-19. Headache, dizziness, taste and smell dysfunctions, and impaired consciousness were the most frequently described neurological symptoms, the latter more often among patients with a severe or critical disease course. To date, only smaller cohort studies or single cases have reported cerebrovascular events, seizures, meningoencephalitis, and immune-mediated neurological diseases, not suitable for quantitative analysis.

Conclusion: The most frequent neurological symptoms reported in association with COVID-19 are non-specific for the infection with SARS-CoV-2. Although SARS-CoV-2 may have the potential to gain direct access to the nervous system, so far, SARS-CoV-2 was detected in the cerebrospinal fluid in two cases only. Standardized international registries are needed to clarify the clinical relevance of the neuropathogenicity of SARS-CoV-2 and to elucidate a possible impact of SARS-CoV-2 infection on common neurological disease, such as Alzheimer's, Parkinson's disease or multiple sclerosis.

Keywords: COVID-19; Nervous system; Neuro-COVID; SARS-CoV-2.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Neurotropism of SARS-CoV-2. SARS-CoV-2 spike (S) proteins bind angiotensin-converting enzyme 2 (ACE-2) receptor of target cell. Cleavage of the S protein by type II transmembrane serine protease (TMPRSS2), facilitates viral entry. ACE-2 mRNA expression and double-positive ACE-2 + TMPRSS2 + cells have been identified, amongst others, on neurons and glial cells, in the cerebral cortex, striatum, hypothalamus, substantia nigra and brain stem, making the CNS potential direct targets of SARS-CoV-2 infection ( Adapted from Servier Medical Art, https://smart.servier.com)
Fig. 2
Fig. 2
Neuropathogenesis of SARS-CoV-2. a Three potential mechanisms of SARS-CoV-2 invasion into the CNS. (1) CNS entry through the transcribial route, involving infection of the olfactory epithelium [13], (2) axonal transport and trans-synaptic transfer, including infection of various peripheral nerve terminals [17] and the spread along nerves [15] and (3) viral spread through the bloodstream or lymphatic system [18]. b Factors indirectly influencing neurotoxicity. Immune-mediated pathogenesis, associated with, amongst others, lymphocytopenia [2] and T-helper 1 cell-mediated neuroinflammation [20, 21] coagulation dysfunction including higher D-dimer levels, prolonged prothrombin time, and decreased platelet counts [22], as well as hypoxia [26], disturbances of the gut microbiome during gastrointestinal SARS-CoV-2 infection [27] and cardiovascular-metabolic comorbidities like hypertension, diabetes [23] and altered glucose and lipid metabolism [24, 25] might all influence SARS-CoV-2 neuropathogenicity ( Adapted from Servier Medical Art, https://smart.servier.com)
Fig. 3
Fig. 3
Study identification PRISMA flow diagram

References

    1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1–9. doi: 10.1001/jamaneurol.2020.1127.
    1. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94:e00127–e220.
    1. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052.
    1. Palasca O, Santos A, Stolte C, Gorodkin J, Jensen LJ (2018) TISSUES 2.0: an integrative web resource on mammalian tissue expression. Database (Oxford) 2018:bay028
    1. Muus C, Luecken MD, Eraslan G, et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. Bioinformatics. 2020 doi: 10.1101/2020.04.19.049254.
    1. Chen R, Wang K, Yu J, Chen Z, Wen C, Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. Neuroscience. 2020 doi: 10.1101/2020.04.07.030650.
    1. Qi J, Zhou Y, Hua J, et al. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to COVID-19 infection. Bioinformatics. 2020 doi: 10.1101/2020.04.16.045690.
    1. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202:415–424. doi: 10.1084/jem.20050828.
    1. Kabbani N, Olds JL. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol. 2020;97:351–353. doi: 10.1124/molpharm.120.000014.
    1. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 2020 doi: 10.1001/jamaneurol.2020.2065.
    1. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995–998. doi: 10.1021/acschemneuro.0c00122.
    1. Baig AM. Emerging insights for better delivery of chemicals and stem cells to the brain. ACS Chem Neurosci. 2017;8:1119–1121. doi: 10.1021/acschemneuro.7b00106.
    1. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552–555. doi: 10.1002/jmv.25728.
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264–7275. doi: 10.1128/JVI.00737-08.
    1. Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12:14. doi: 10.3390/v12010014.
    1. Cain MD, Salimi H, Diamond MS, Klein RS. Mechanisms of pathogen invasion into the central nervous system. Neuron. 2019;103:771–783. doi: 10.1016/j.neuron.2019.07.015.
    1. Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386.
    1. Stienne C, Michieletto MF, Benamar M, et al. Foxo3 transcription factor drives pathogenic T helper 1 differentiation by inducing the expression of EOMES. Immunity. 2016;45:774–787. doi: 10.1016/j.immuni.2016.09.010.
    1. Zhou Y, Fu B, Zheng X, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. Immunology. 2020 doi: 10.1101/2020.02.12.945576.
    1. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58:1021–1028. doi: 10.1515/cclm-2020-0369.
    1. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109:531–538. doi: 10.1007/s00392-020-01626-9.
    1. Hussain A, Bhowmik B, do Valemoreira NC. COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pr. 2020;162:108142. doi: 10.1016/j.diabres.2020.108142.
    1. Wei X, Su J, Lin Y, et al. (2020) SARS-COV-2 Infection Causes Dyslipidemia and Increases Levels of Cancer Biomarkers in COVID-19 Patients. Lancet Infect Dis (preprint with the Lancet). Available at SSRN: or 10.2139/ssrn.3552854
    1. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091.
    1. Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020;35:744–748. doi: 10.1111/jgh.15047.
    1. C.I. for Single Rate [online]. . Accessed 20 May 2020
    1. Sun C, Zhang XB, Dai Y, Xu XZ, Zhao J. Clinical analysis of 150 cases of 2019 novel coronavirus infection in Nanyang City, Henan Province. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43:503–508.
    1. Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020 doi: 10.1002/alr.22579.
    1. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20:425–434. doi: 10.1016/S1473-3099(20)30086-4.
    1. Levinson R, Elbaz M, Ben-Ami R, et al. Anosmia and dysgeusia in patients with mild SARS-CoV-2 infection [online] Infect Dis. 2020 doi: 10.1101/2020.04.11.20055483.
    1. Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 doi: 10.1007/s00405-020-05965-1.
    1. Guan W, Liang W, Zhao Y, et al. Comorbidity and its impact on 1,590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55:2000547. doi: 10.1183/13993003.00547-2020.
    1. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382:2268–2270. doi: 10.1056/NEJMc2008597.
    1. Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vascul Neurol. 2020 doi: 10.1136/svn-2020-000431.
    1. 刘茜, 王荣帅, 屈国强, et al (2020) 新型冠状病毒肺炎死亡尸体系统解剖大体观察报告 - 临床指南汇编数据库. 法医学杂志36:21–23
    1. He J, Cheng G, Xu W, Zhang L, Zeng Z. Diagnosis and treatment of an elderly patient with secondary cerebral infarction caused by COVID-19. J South Med Univ. 2020;40:351–352.
    1. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062.
    1. Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in downtown Los Angeles, early April 2020. Brain Behav Immun. 2020;87:33. doi: 10.1016/j.bbi.2020.04.024.
    1. Lu L, Xiong W, Liu D, et al. New-onset acute symptomatic seizure and risk factors in corona virus disease 2019: a retrospective multicenter study. Epilepsia. 2020;61:e49–e53. doi: 10.1111/epi.16524.
    1. Xiang F, Xu X, Gao L, et al. (2020) First case of 2019 coronavirus disease with encephalitis [online]. . Accessed 2 Apr 2020
    1. Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020;S0889–1591(20):30465–30467. doi: 10.1016/j.bbi.2020.04.017.
    1. Wang L, Cai J, Luo H, et al. A case of coronavirus disease 2019 with tuberculous meningitis. Chin J Neurol. 2020;53:361–364.
    1. Pilotto A, Si O, Masciocchi S, et al. Steroid-responsive severe encephalopathy in SARS-CoV-2 infection. Ann Neurol. 2020 doi: 10.1002/ana.25783.
    1. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020 doi: 10.1148/radiol.2020201187.
    1. Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. Neurology. 2020 doi: 10.1101/2020.03.16.20035105.
    1. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19:383–384. doi: 10.1016/S1474-4422(20)30109-5.
    1. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020 doi: 10.1212/WNL.0000000000009619.
    1. Wei H, Yin H, Huang M, Guo Z. The 2019 novel cornoavirus pneumonia with onset of oculomotor nerve palsy: a case study. J Neurol. 2020;267:1550–1553. doi: 10.1007/s00415-020-09773-9.
    1. van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system: the olfactory nerve: a shortcut for viruses into the CNS. J Pathol. 2015;235:277–287. doi: 10.1002/path.4461.
    1. Suzuki M, Saito K, Min W-P, et al. Identification of viruses in patients with postviral olfactory dysfunction. The Laryngoscope. 2007;117:272–277. doi: 10.1097/01.mlg.0000249922.37381.1e.
    1. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020 doi: 10.1056/NEJMc2011400.
    1. Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020 doi: 10.7326/M20-2003.
    1. Bryce C, Grimes Z, Pujadas E et al (2020) Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. Mt Sinai COVID-19 Autop Exp. 10.1101/2020.05.18.20099960
    1. Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol (Berl) 2020;140:1–6. doi: 10.1007/s00401-020-02166-2.
    1. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019;23:352. doi: 10.1186/s13054-019-2626-z.
    1. Zhang B, Zhou X, Qiu Y et al (2020) Clinical characteristics of 82 death cases with COVID-19. 10.1101/2020.02.26.20028191
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev. 2020;100(3):1065–1075. doi: 10.1152/physrev.00013.2020.
    1. Lean European Open Survey on SARS-CoV-2 Infected Patients—Studying SARS-CoV-2 collectively [online]. . Accessed 2 May 2020

Source: PubMed

3
Se inscrever