Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-Day Energy Balance, Knowledge, and Impact on Sports Performance

Danielle M Logue, Sharon M Madigan, Anna Melin, Eamonn Delahunt, Mirjam Heinen, Sarah-Jane Mc Donnell, Clare A Corish, Danielle M Logue, Sharon M Madigan, Anna Melin, Eamonn Delahunt, Mirjam Heinen, Sarah-Jane Mc Donnell, Clare A Corish

Abstract

Low energy availability (EA) underpins the female and male athlete triad and relative energy deficiency in sport (RED-S). The condition arises when insufficient calories are consumed to support exercise energy expenditure, resulting in compromised physiological processes, such as menstrual irregularities in active females. The health concerns associated with longstanding low EA include menstrual/libido, gastrointestinal and cardiovascular dysfunction and compromised bone health, all of which can contribute to impaired sporting performance. This narrative review provides an update of our previous review on the prevalence and risk of low EA, within-day energy deficiency, and the potential impact of low EA on performance. The methods to assess EA remain a challenge and contribute to the methodological difficulties in identifying "true" low EA. Screening female athletic groups using a validated screening tool such as the Low Energy Availability in Females Questionnaire (LEAF-Q) has shown promise in identifying endurance athletes at risk of low EA. Knowledge of RED-S and its potential implications for performance is low among coaches and athletes alike. Development of sport and gender-specific screening tools to identify adolescent and senior athletes in different sports at risk of RED-S is warranted. Education initiatives are required to raise awareness among coaches and athletes of the importance of appropriate dietary strategies to ensure that sufficient calories are consumed to support training.

Keywords: health and performance; low energy availability; relative energy deficiency in sport.

Conflict of interest statement

Danielle Logue, Sharon Madigan, Anna Melin, Eamonn Delahunt, Mirjam Heinen, Sarah-Jane McDonnell and Clare Corish declare that they have no conflicts of interest relevant to the content of this review.

Figures

Figure 1
Figure 1
Adapted from the relative energy deficiency in sport health model [1,2] with the inclusion of the male and female athlete triad and the exercise-hypogonadal male condition [6]. Abbreviations: EHMC: exercise-hypogonadal male condition; RED-S: relative energy deficiency in sport *the exact physiological mechanism inducing the reduction of testosterone in men is currently unclear; it is postulated to be a dysfunction within the hypothalamic-pituitary-testicular regulatory axis.
Figure 2
Figure 2
Male and female hypothalamic-pituitary-gonadal axes. Reprinted with permission: Artoria2e5 [CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) *the reproductive components of the neuroendocrine system in the body are extremely sensitive to Low Energy Availability (LEA) in females [1,2] and the stress of exercise in males [6].

References

    1. Mountjoy M., Sundgot-Borgen J., Burke L., Carter S., Constantini N., Lebrun C., Meyer N., Sherman R., Steffen K., Budgett R., et al. The IOC consensus statement: Beyond the female athlete triad—relative energy deficiency in sport (RED-S) Br. J. Sports Med. 2014;48:491–497. doi: 10.1136/bjsports-2014-093502.
    1. Mountjoy M., Sundgot-Borgen J.K., Burke L.M., Ackerman K.E., Blauwet C., Constantini N., Lebrun C., Lundy B., Melin A.K., Meyer N.L., et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 2018;52:687–697. doi: 10.1136/bjsports-2018-099193.
    1. Loucks A.B., Kiens B., Wright H.H. Energy availability in athletes. J. Sports Sci. 2011;29(Suppl. 1):S7–S15. doi: 10.1080/02640414.2011.588958.
    1. Raysmith B.P., Drew M.K. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: A 5-year prospective study. J. Sci. Med. Sport. 2016;19:778–783. doi: 10.1016/j.jsams.2015.12.515.
    1. Ackerman K.E., Holtzman B., Cooper K.M., Flynn E.F., Bruinvels G., Tenforde A.S., Popp K.L., Popp K.L., Simpkin A.J., Parziale A.L. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br. J. Sports Med. 2019;53:628–633. doi: 10.1136/bjsports-2017-098958.
    1. Hackney A.C., Lane A.R., Register-Mihalik J., O’Leary B.C. Endurance exercise training and male sexual libido. Med. Sci. Sports Exerc. 2017;49:1383–1388. doi: 10.1249/MSS.0000000000001235.
    1. Logue D., Madigan S.M., Delahunt E., Heinen M., McDonnell S.J., Corish C.A. Low energy availability in athletes: A review of prevalence, dietary patterns, physiological health, and sports performance. Sports Med. 2018;48:73–96. doi: 10.1007/s40279-017-0790-3.
    1. Condo D., Lohman R., Kelly M., Carr A. Nutritional intake, sports nutrition knowledge and energy availability in female australian rules football players. Nutrients. 2019;11:971. doi: 10.3390/nu11050971.
    1. Keay N., Francis G., Entwistle I., Hind K. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-month randomised controlled trial. BMJ Open Sport Exerc. Med. 2019;5:e000523. doi: 10.1136/bmjsem-2019-000523.
    1. Kroshus E., DeFreese J.D., Kerr Z.Y. Collegiate athletic trainers’ knowledge of the female athlete triad and relative energy deficiency in sport. J. Athl Train. 2018;53:51–59. doi: 10.4085/1062-6050-52.11.29.
    1. Krick R.L., Brown A.F., Brown K.N. Increased female athlete triad knowledge following a brief video educational intervention. J. Nutr. Educ. Behav. 2019;51:1126–1129. doi: 10.1016/j.jneb.2019.05.600.
    1. Harbour R., Miller J. A new system for grading recommendations in evidence based guidelines. BMJ. 2001;323:334–336. doi: 10.1136/bmj.323.7308.334.
    1. Silva M.G., Silva H.H., Paiva T. Sleep duration, body composition, dietary profile and eating behaviours among children and adolescents: A comparison between Portuguese acrobatic gymnasts. Eur. J. Pediatr. 2018;177:815–825. doi: 10.1007/s00431-018-3124-z.
    1. Civil R., Lamb A., Loosmore D., Ross L., Livingstone K., Strachan F., Dick J.R., Stevenson E.J., Brown M.A., Witard O.C. Assessment of dietary intake, energy status, and factors associated with RED-S in vocational female ballet students. Front Nutr. 2018;5:136. doi: 10.3389/fnut.2018.00136.
    1. Brown M.A., Howatson G., Quin E., Redding E., Stevenson E.J. Energy intake and energy expenditure of pre-professional female contemporary dancers. PLoS ONE. 2017;12:e0171998. doi: 10.1371/journal.pone.0171998.
    1. Costa P.B., Richmond S.R., Smith C.R., Currier B., Stecker R.A., Gieske B.T., Kemp K., Witherbee K.E., Kerksick C.M. Physiologic, metabolic, and nutritional attributes of collegiate synchronized swimmers. Int. J. Sports Physiol. Perform. 2019;14:658–664. doi: 10.1123/ijspp.2018-0547.
    1. Zanders B.R., Currier B.S., Harty P.S., Zabriskie H.A., Smith C.R., Stecker R.A., Richmond S.R., Jagim A.R., Kerksick C.M. Changes in energy expenditure, dietary intake, and energy availability across an entire collegiate women’s basketball season. J. Strength Cond. Res. 2018;17 doi: 10.1519/jsc.0000000000002783.
    1. Ong J.L., Brownlee I.A. Energy expenditure, availability, and dietary intake assessment in competitive female dragon boat athletes. Sports. 2017;5:45. doi: 10.3390/sports5020045.
    1. Zabriskie H.A., Currier B.S., Harty P.S., Stecker R.A., Jagim A.R., Kerksick C.M. Energy status and body composition across a collegiate women’s lacrosse season. Nutrients. 2019;11:470. doi: 10.3390/nu11020470.
    1. Cherian K.S., Sainoji A., Nagalla B., Yagnambhatt V.R. Energy balance coexists With disproportionate macronutrient consumption across pretraining, during training, and posttraining among indian junior soccer players. Pediatr. Exerc. Sci. 2018;30:506–515. doi: 10.1123/pes.2017-0276.
    1. Braun H., von Andrian-Werburg J., Schänzer W., Thevis M. Nutrition status of young elite female german football players. Pediatr. Exerc. Sci. 2017;30:157–167. doi: 10.1123/pes.2017-0072.
    1. Silva M.G., Silva H.H. Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players. Eur. J. Pediatr. 2017;176:41–50. doi: 10.1007/s00431-016-2803-x.
    1. Heikura I.A., Burke L.M., Bergland D., Uusitalo A.L.T., Mero A.A., Stellingwerff T. Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int. J. Sports Physiol. Perform. 2018;13:1090–1096. doi: 10.1123/ijspp.2017-0547.
    1. Heikura I.A., Uusitalo A.L.T., Stellingwerff T., Bergland D., Mero A.A., Burke L.M. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:403–411. doi: 10.1123/ijsnem.2017-0313.
    1. McCormack W.P., Shoepe T.C., LaBrie J., Almstedt H.C. Bone mineral density, energy availability, and dietary restraint in collegiate cross-country runners and non-running controls. Eur. J. Appl. Physiol. 2019;119:1747–1756. doi: 10.1007/s00421-019-04164-z.
    1. Koehler K., Achtzehn S., Braun H., Mester J., Schaenzer W. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl. Physiol. Nutr. Metab. 2013;38:725–733. doi: 10.1139/apnm-2012-0373.
    1. Melin A., Tornberg Å.B., Skouby S., Møller S.S., Sundgot-Borgen J., Faber J., Sidelmann J.J., Aziz M., Sjödin A. Energy availability and the female athlete triad in elite endurance athletes. Scand. J. Med. Sci. Sports. 2015;25:610–622. doi: 10.1111/sms.12261.
    1. Williams N.I., Leidy H.J., Hill B.R., Lieberman J.L., Legro R.S., De Souza M.J. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am. J. Physiol. Endocrinol. Metab. 2015;308:E29–E39. doi: 10.1152/ajpendo.00386.2013.
    1. Reed J.L., De Souza M.J., Mallinson R.J., Scheid J.L., Williams N.I. Energy availability discriminates clinical menstrual status in exercising women. J. Int. Soc. Sports Nutr. 2015;12:11. doi: 10.1186/s12970-015-0072-0.
    1. Melin A., Tornberg A.B., Skouby S., Faber J., Ritz C., Sjödin A., Sundgot-Borgen J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014;48:540–545. doi: 10.1136/bjsports-2013-093240.
    1. Joy E., De Souza M.J., Nattiv A., Misra M., Williams N.I., Mallinson R.J., Gibbs J.C., Olmsted M., Goolsby M., Matheson G. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad. Curr. Sports Med. Rep. 2014;13:219–232. doi: 10.1249/JSR.0000000000000077.
    1. Mountjoy M., Sundgot-Borgen J., Burke L., Carter S., Constantini N., Lebrun C., Meyer N., Sherman R., Steffen K., Budgett R., et al. RED-S CAT. Relative Energy Deficiency in Sport (RED-S) Clinical Assessment Tool (CAT) Br. J. Sports Med. 2015 doi: 10.1136/bjsports-2015-094873.
    1. Black K., Slater J., Brown R.C., Cooke R. Low energy availability, plasma lipids, and hormonal profiles of recreational athletes. J. Strength Cond. Res. 2018;32:2816–2824. doi: 10.1519/JSC.0000000000002540.
    1. Brook E.M., Tenforde A.S., Broad E.M., Matzkin E.G., Yang H.Y., Collins J.E., Blauwet C.A. Low energy availability, menstrual dysfunction, and impaired bone health: A survey of elite para athletes. Scand. J. Med. Sci. Sports. 2019;29:678–685. doi: 10.1111/sms.13385.
    1. Holtzman B., Tenforde A.S., Parziale A.L., Ackerman K.E. Characterization of risk quantification differences using female athlete triad cumulative risk assessment and relative energy deficiency in sport clinical assessment tool. Int. J. Sport Nutr. Exerc. Metab. 2019;29:569–575. doi: 10.1123/ijsnem.2019-0002.
    1. Nose-Ogura S., Yoshino O., Dohi M., Kigawa M., Harada M., Hiraike O., Onda T., Osuga Y., Fujii T., Saito S. Risk factors of stress fractures due to the female athlete triad: Differences in teens and twenties. Scand. J. Med. Sci. Sports. 2019;29:1501–1510. doi: 10.1111/sms.13464.
    1. Logue D.M., Madigan S.M., Heinen M., McDonnell S.J., Delahunt E., Corish C.A. Screening for risk of low energy availability in athletic and recreationally active females in Ireland. Eur. J. Sport Sci. 2018;19:112–122. doi: 10.1080/17461391.2018.1526973.
    1. Staal S., Sjödin A., Fahrenholtz I., Bonnesen K., Melin A.K. Low RMRratio as a surrogate marker for energy deficiency, the choice of predictive equation vital for correctly identifying male and female ballet dancers at risk. Int. J. Sport Nutr. Exerc. Metab. 2018;28:412–418. doi: 10.1123/ijsnem.2017-0327.
    1. Wilson G., Martin D., Morton J.P., Close G.L. Male flat jockeys do not display deteriorations in bone density or resting metabolic rate in accordance with race riding experience: Implications for RED-S. Int. J. Sport Nutr. Exerc. Metab. 2018;28:434–439. doi: 10.1123/ijsnem.2017-0371.
    1. Drew M.K., Vlahovich N., Hughes D., Appaneal R., Peterson K., Burke L., Lundy B., Toomey M., Watts D., Lovell G., et al. A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J. Sci. Med. Sport. 2017;20:745–750. doi: 10.1016/j.jsams.2017.02.010.
    1. Sygo J., Coates A.M., Sesbreno E., Mountjoy M.L., Burr J.F. Prevalence of indicators of low energy availability in elite female sprinters. Int. J. Sport Nutr. Exerc. Metab. 2018;28:490–496. doi: 10.1123/ijsnem.2017-0397.
    1. Schofield K.L., Thorpe H., Sims S.T. Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Exp. Physiol. 2019;104:469–475. doi: 10.1113/EP087512.
    1. Bone J.L., Burke L.M. No difference in young adult athletes’ resting energy expenditure when measured under inpatient or outpatient conditions. Int. J. Sport Nutr. Exerc. Metab. 2018;28:464–467. doi: 10.1123/ijsnem.2016-0315.
    1. Mountjoy M.L., Burke L.M., Stellingwerff T., Sundgot-Borgen J. Relative energy deficiency in sport: The tip of an iceberg. Int. J. Sport Nutr. Exerc. Metab. 2018;28:313–315. doi: 10.1123/ijsnem.2018-0149.
    1. Burke L.M., Lundy B., Fahrenholtz I.L., Melin A.K. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:350–363. doi: 10.1123/ijsnem.2018-0142.
    1. Sundgot-Borgen J., Torstveit M.K. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin. J. Sport Med. 2004;14:25–32. doi: 10.1097/00042752-200401000-00005.
    1. Lichtenstein M.B., Hinze C.J., Emborg B., Thomsen F., Hemmingsen S.D. Compulsive exercise: Links, risks and challenges faced. Psychol. Res. Behav. Manag. 2017;10:85–95. doi: 10.2147/PRBM.S113093.
    1. Turton R., Goodwin H., Meyer C. Athletic identity, compulsive exercise and eating psychopathology in long-distance runners. Eat Behav. 2017;26:129–132. doi: 10.1016/j.eatbeh.2017.03.001.
    1. Torstveit M.K., Fahrenholtz I.L., Lichtenstein M.B., Stenqvist T.B., Melin A.K. Exercise dependence, eating disorder symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc. Med. 2019;5:e000439. doi: 10.1136/bmjsem-2018-000439.
    1. Nattiv A., Loucks A.B., Manore M.M., Sanborn C.F., Sundgot-Borgen J., Warren M.P. American college of sports medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007;39:1867–1882.
    1. Loucks A.B., Verdun M., Heath E.M. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J. Appl. Physiol. 1998;84:37–46. doi: 10.1152/jappl.1998.84.1.37.
    1. Slater J., Brown R., McLay-Cooke R., Black K. Low energy availability in exercising women: Historical perspectives and future directions. Sports Med. 2017;47:207–220. doi: 10.1007/s40279-016-0583-0.
    1. Hilton L.K., Loucks A.B. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am. J. Physiol. Endocrinol. Metab. 2000;278:E43–E49. doi: 10.1152/ajpendo.2000.278.1.E43.
    1. Hackney A.C., Fahrner C.L., Stupnicki R. Reproductive hormonal responses to maximal exercise in endurance-trained men with low resting testosterone levels. Exp. Clin. Endocrinol. Diabetes. 1997;105:291–295. doi: 10.1055/s-0029-1211767.
    1. Fahrenholtz I.L., Sjödin A., Benardot D., Tornberg Å.B., Skouby S., Faber J., Sundgot-Borgen J.K., Melin A.K. Within-day energy deficiency and reproductive function in female endurance athletes. Scand. J. Med. Sci. Sports. 2018;28:1139–1146. doi: 10.1111/sms.13030.
    1. Torstveit M.K., Fahrenholtz I., Stenqvist T.B., Sylta Ø., Melin A. Within-day energy deficiency and metabolic perturbation in male endurance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:419–427. doi: 10.1123/ijsnem.2017-0337.
    1. Hawley J.A., Burke L.M. Effect of meal frequency and timing on physical performance. Br. J. Nutr. 1997;77(Suppl. 1):S91–S103. doi: 10.1079/BJN19970107.
    1. Melin A., Tornberg Å.B., Skouby S., Møller S.S., Faber J., Sundgot-Borgen J., Sjödin A. Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand. J. Med. Sci. Sports. 2016;26:1060–1071. doi: 10.1111/sms.12516.
    1. Gordon C.M., Ackerman K.E., Berga S.L., Kaplan J.R., Mastorakos G., Misra M., Murad M.H., Santoro N.F., Warren M.P. Functional hypothalamic amenorrhea: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2017;102:1413–1439. doi: 10.1210/jc.2017-00131.
    1. Enns D.L., Tiidus P.M. The influence of estrogen on skeletal muscle: Sex matters. Sports Med. 2010;40:41–58. doi: 10.2165/11319760-000000000-00000.
    1. Elliott-Sale K.J., Tenforde A.S., Parziale A.L., Holtzman B., Ackerman K.E. Endocrine effects of relative energy deficiency in sport. Int. J. Sport Nutr. Exerc. Metab. 2018;28:335–349. doi: 10.1123/ijsnem.2018-0127.
    1. Tornberg Å.B., Melin A., Koivula F.M., Johansson A., Skouby S., Faber J., Sjödin A. Reduced neuromuscular performance in amenorrheic elite endurance athletes. Med. Sci. Sports Exerc. 2017;49:2478–2485. doi: 10.1249/MSS.0000000000001383.
    1. Vanheest J.L., Rodgers C.D., Mahoney C.E., De Souza M.J. Ovarian suppression impairs sport performance in junior elite female swimmers. Med. Sci. Sports Exerc. 2014;46:156–166. doi: 10.1249/MSS.0b013e3182a32b72.
    1. Harber V.J., Petersen S.R., Chilibeck P.D. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can. J. Appl. Physiol. 1998;23:293–306. doi: 10.1139/h98-017.
    1. Zinn C., Schofield G., Wall C. Development of a psychometrically valid and reliable sports nutrition knowledge questionnaire. J. Sci. Med. Sport. 2005;8:346–351. doi: 10.1016/S1440-2440(05)80045-3.

Source: PubMed

3
Se inscrever