Dose Comparison of Dexmedetomidine Sedation following Spinal Anesthesia: Parturient versus Nonpregnant Women-A Randomized Trial

Ming Xiong, Biyun Chen, Zurong Hu, Somdatta Gupta, Zhitao Li, Jiping Liu, Jing He, Shivani Patel, Jean Daniel Eloy, Bo Xu, Ming Xiong, Biyun Chen, Zurong Hu, Somdatta Gupta, Zhitao Li, Jiping Liu, Jing He, Shivani Patel, Jean Daniel Eloy, Bo Xu

Abstract

Background: This study was designed to investigate and compare the effective doses of dexmedetomidine for sedation in parturient patients who underwent Cesarean section (CS) and nonpregnant women who underwent elective gynecologic surgery.

Methods: The study comprised 60 females aged between 25 and 35. They were divided into two groups. The parturient group received a bolus dose of dexmedetomidine over 15 min after the delivery of the fetus and placenta. In the nonpregnant women group, a bolus of dexmedetomidine was administered intravenously upon the completion of spinal anesthesia. The subsequent dose required by patients in each group was then determined through a modified two-stage Dixon up-and-down sequential method. Probit analysis was used to calculate the ED50 and the ED95 of dexmedetomidine for adequate sedation.

Results: The ED50 of dexmedetomidine for adequate sedation in parturient patients was 1.58 μg/kg (1.51-1.66 μg/kg); in nonpregnant women, it was 0.96 μg/kg (0.91-1.01 μg/kg) (95% CI). The ED95 of dexmedetomidine in parturients was 1.80 μg/kg (1.70-2.16) μg/kg and that of nonpregnant women was 1.10 μg/kg (1.04-1.30 μg/kg) (95% CI). The ED50 in parturients was significantly higher than that in nonpregnant women (P < 0.05).

Conclusion: The ED50 of dexmedetomidine for target sedation in parturients who received spinal anesthesia for CS is greater than 1.5 times that in nonpregnant women who received spinal anesthesia for lower abdominal gynecologic surgery. This study postulates that the dose of dexmedetomidine required to achieve optimal sedation following spinal anesthesia is much higher in parturients than in nonpregnant women undergoing gynecologic surgeries. This trial is registered with NCT02111421.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Ming Xiong et al.

Figures

Figure 1
Figure 1
Responses of consecutive patients receiving dexmedetomidine sedation in postpartum parturient group and nonpregnant women group according to the modified up-and-down sequence.
Figure 2
Figure 2
Dose-response curves plotted from the Probit analysis of individual dexmedetomidine sedation in postpartum parturient group and nonpregnant women group. ED50, the median effective dose; ED95, the 95% effective dose.
Figure 3
Figure 3
The correlation between Narcotrend index and OAA/S scale under dexmedetomidine sedation with spinal anesthesia in both groups. r, correlation coefficient.
Figure 4
Figure 4
The HR (a) and MAP (b) in both groups at different time points. HR, heart rate; MAP, mean arterial pressure; T0, before dexmedetomidine administration; T1, T2, T3, T4, T5, and T6, 5 min, 10 min, 15 min, 20 min, 25 min, and 30 min after dexmedetomidine infusion started.

References

    1. Roach M. K., Abramovici A., Tita A. T. Dose and duration of oxytocin to prevent postpartum hemorrhage: a review. American Journal of Perinatology. 2012;30(7):523–528. doi: 10.1055/s-0032-1329184.
    1. Bhana N., Goa K. L., McClellan K. J. Dexmedetomidine. Drugs. 2000;59(2):263–268. doi: 10.2165/00003495-200059020-00012.
    1. Toyama H., Wagatsuma T., Ejima Y., Matsubara M., Kurosawa S. Cesarean section and primary pulmonary hypertension: the role of intravenous dexmedetomidine. International Journal of Obstetric Anesthesia. 2009;18(3):262–267. doi: 10.1016/j.ijoa.2008.08.001.
    1. Palanisamy A., Klickovich R. J., Ramsay M., Ouyanq D. W., Tsen L. C. Intravenous dexmedetomidine as an adjunct for labor analgesia and cesarean delivery anesthesia in a parturient with a tethered spinal cord. International Journal of Obstetric Anesthesia. 2009;18(3):258–261. doi: 10.1016/j.ijoa.2008.10.002.
    1. Neumann M. M., Davio M. B., Macknet M. R., Applequate R. L. Dexmedetomidine for awake fiberoptic intubation in a parturient with spinal muscular atrophy type III for cesarean delivery. International Journal of Obstetric Anesthesia. 2009;18(4):403–407. doi: 10.1016/j.ijoa.2009.05.002.
    1. Jung H., Choi S. C. Sequential method of estimating the LD50 using a modified up-and-down rule. Journal of Biopharmaceutical Statistics. 1994;4(1):19–30. doi: 10.1080/10543409408835069.
    1. Albertin A., Casati A., Federica L., et al. The effect-site concentration of remifentanil blunting cardiovascular responses to tracheal intubation and skin incision during bispectral index-guided propofol anesthesia. Anesthesia & Analgesia. 2005;101(1):125–130. doi: 10.1213/01.ane.0000153012.35120.fe.
    1. Kasuya Y., Govinda R., Rauch S., Mascha E. J., Sessier D. I., Turan A. The correlation between bispectral index and observational sedation scale in volunteers sedated with dexmedetomidine and propofol. Anesthesia & Analgesia. 2009;109(6):1811–1815. doi: 10.1213/ane.0b013e3181c04e58.
    1. Datta S., Migliozzi R. P., Flanagan H. L., Krieqer N. R. Chronically administered progesterone decreases halothane requirements in rabbits. Anesthesia & Analgesia. 1989;68(1):46–50. doi: 10.1213/00000539-198901000-00010.
    1. Gin T., Chan M. T. Decreased minimum alveolar concentration of isoflurane in pregnant humans. Anesthesiology. 1994;81(4):829–832. doi: 10.1097/00000542-199410000-00009.
    1. Lee J., Lee J., Ko S. The relationship between serum progesterone concentration and anesthetic and analgesic requirements. Anesthesia & Analgesia. 2014;119(4):901–905. doi: 10.1213/ane.0000000000000366.
    1. Gin T., Mainland P., Chan M. T., Short T. G. Decreased thiopental requirements in early pregnancy. Anesthesiology. 1997;86(1):73–78. doi: 10.1097/00000542-199701000-00011.
    1. Mongardon N., Servin F., Perrin M., et al. Predicted propofol effect-site concentration for induction and emergence of anesthesia during early pregnancy. Anesthesia & Analgesia. 2009;109(1):90–95.
    1. Chan M. T. V., Gin T. Postpartum changes in the minimum alveolar concentration of isoflurane. Anesthesiology. 1995;82(6):1360–1363. doi: 10.1097/00000542-199506000-00006.
    1. Yu M., Han C., Jiang X., Wu X., Dinq Z. Effect and placental transfer of dexmedetomidine during caesarean section under general anesthesia. Basic & Clinical Pharmacology & Toxicology. 2015;117(3):204–208. doi: 10.1111/bcpt.12389.
    1. Sia A. T., Kwek K., Yeo G. S. The in vitro effects of clonidine and dexmedetomidine on human myometrium. International Journal of Obstetric Anesthesia. 2005;14(2):104–107. doi: 10.1016/j.ijoa.2004.11.004.
    1. Afonso J., Reis F. Dexmedetomidine: current role in anesthesia and intensive care. Revista Brasileira de Anestesiologia. 2012;62(1):118–133.
    1. Hall J. E., Uhrich T. D., Barney J. A., Arain S. R., Ebert T. J. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesthesia & Analgesia. 2000;90(3):699–705. doi: 10.1097/00000539-200003000-00035.
    1. Ben-David B., Vaida S., Gaitini L. The influence of high spinal anesthesia on sensitivity to midazolam sedation. Anesthesia & Analgesia. 1995;81(3):525–528. doi: 10.1213/00000539-199509000-00017.
    1. Doufas A. G., Wadhwa A., Shah Y. M., Lin C. M., Hauqh G. S., Sessier D. I. Block-dependent sedation during epidural anesthesia is associated with delayed brainstem conduction. British Journal of Anaesthesia. 2004;93(2):228–234. doi: 10.1093/bja/aeh192.

Source: PubMed

3
Se inscrever