A microdialysis study of the novel antiepileptic drug levetiracetam: extracellular pharmacokinetics and effect on taurine in rat brain

X Tong, P N Patsalos, X Tong, P N Patsalos

Abstract

Using a rat model which allows serial blood sampling and concurrent brain microdialysis sampling, we have investigated the temporal kinetic inter-relationship of levetiracetam in serum and brain extracellular fluid (frontal cortex and hippocampus) following systemic administration of levetiracetam, a new antiepileptic drug. Concurrent extracellular amino acid concentrations were also determined. After administration (40 or 80 mg kg(-1)), levetiracetam rapidly appeared in both serum (T(max), 0.4 - 0.7 h) and extracellular fluid (T(max), 2.0 - 2.5 h) and concentrations rose linearly and dose-dependently, suggesting that transport across the blood-brain barrier is rapid and not rate-limiting. The serum free fraction (free/total serum concentration ratio; mean+/-s.e.mean range 0.93 - 1.05) was independent of concentration and confirms that levetiracetam is not bound to blood proteins. The kinetic profiles for the hippocampus and frontal cortex were indistinguishable suggesting that levetiracetam distribution in the brain is not brain region specific. However, t(1/2) values were significantly larger than those for serum (mean range, 3.0 - 3.3 h vs 2.1 - 2.3 h) and concentrations did not attain equilibrium with respect to serum. Levetiracetam (80 mg kg(-1)) was associated with a significant reduction in taurine in the hippocampus and frontal cortex. Other amino acids were unaffected by levetiracetam. Levetiracetam readily and rapidly enters the brain without regional specificity. Its prolonged efflux from and slow equilibration within the brain may explain, in part, its long duration of action. The concurrent changes in taurine may contribute to its mechanism of action.

Figures

Figure 1
Figure 1
Serum and frontal cortex and hippocampal microdialysate concentration versus time profiles for levetiracetam following intraperitoneal administration of 40 mg kg−1 levetiracetam. Data are mean±s.e.mean of six rats.
Figure 2
Figure 2
Serum and frontal cortex and hippocampal microdialysate concentration versus time profiles for levetiracetam following intraperitoneal administration of 80 mg kg−1 levetiracetam. Data are mean±s.e.mean of six rats.
Figure 3
Figure 3
Serum free fraction (free/total concentration ratio) versus time profile for levetiracetam. Dotted line indicates mean value of ratio.
Figure 4
Figure 4
Levetiracetam hippocampal extracellular fluid/serum concentration versus time profiles after 40 mg kg−1 and 80 mg kg−1 levetiracetam. Data are mean±s.e.mean of six rats.
Figure 5
Figure 5
Dialysate taurine in the frontal cortex (a) and hippocampus (b) before and after the administration of levetiracetam (80 mg kg−1) or 0.9% saline (control). Values are mean of four rats and are expressed as percentage of baseline; vertical bars show s.e.mean.

References

    1. ABERCOMBIE E.D., KELLER R.W., ZIGMOND M.J. Characterisation of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioural studies. Neuroscience. 1988;27:897–904.
    1. BALDWIN H.A., WILLIAMS J.L., SNARES M., FERREIRA T., CROSS A.J., GREEN A.R. Attenuation by chlormethiozole administration of the rise in extracellular amino acids following focal ischaemia in the cerebral cortex of the rat. Br. J. Pharmacol. 1994;112:188–194.
    1. BEN-MENACHEM E., FALTER U. Efficacy and tolerability of levetiracetam 3000 mg/day in patients with refractory partial seizures: a multicentre, double-blind, responder-selected study evaluating monotherapy. Epilepsia. 2000;41:1276–1283.
    1. BENVENISTE H. Brain microdialysis. J. Neurochem. 1989;52:1667–1679.
    1. BETTS T., WAEGEMANS T., CRAWFORD P. A multicentre, double-blind, randomized, parallel group study to evaluate the tolerability and efficacy of two oral doses of levetiracetam, 2000 mg daily and 4000 mg daily, without titration in patients with refractory epilepsy. Seizure. 2000;9:80–87.
    1. BIGGS C.S., STARR M.S. Microdialysis study of the effects of the antiparkinsonian drug budipine on L-DOPA-induced release of dopamine and 5-hydroxytryptamine by rat substantia nigra and corpus striatum. Synapse. 1999;34:36–46.
    1. BIRNSTIEL S., WULFERT E., BECK S.G. Levetiracetam (ucb L059) affects in vitro models of epilepsy in CA3 pyramidal neurons without altering normal synaptic transmission. Naunyn-Schmiedeberg's Arch. Pharmacol. 1997;356:611–618.
    1. BUTCHER S.P., BULLOCK R., GRAHAM D.L., MCCULLOCK J. Correlation between amino acids release and neuropathological outcome in rat brain following middle cerebral artery occlusion. Stroke. 1990;21:1727–1733.
    1. CEREGHINO J.J., BITON V., ABOU-KHALIL B., GREIFUSS F., GAUER L.J., LEPPIK I., THE UNITED STATES LEVETIRACETAM STUDY GROUP Levetiracetam for partial seizures. Results of a double-blind, randomized clinical trial. Neurology. 2000;55:236–242.
    1. DANHOF M., LEVY G. Kinetics of drug action in disease states. I. Effect of infusion rate on phenobarbital concentrations in serum, brain and cerebrospinal fluid of normal rats at onset of loss of righting reflex. J. Pharmacol. Exp. Ther. 1984;229:44–50.
    1. DELGADO J.M.R., LERMA J., MARTIN DEL RIO R., SOLIS S.M. Dialytrode technology and local profiles of amino acids in the awake rat brain. J. Neurochem. 1984;42:1218–1228.
    1. DINGEMANSE J., VAN BREE J.B.M.M., DANHOF M. Pharmacokinetic modelling of the anticonvulsant action of phenobarbital in rats. J. Pharmacol. Exp. Ther. 1987;249:601–608.
    1. DOHENY H.C., RATNARAJ N., WHITTINGTON M.A., JEFFERYS J.G.R., PATSALOS P.N. Blood and cerebrospinal fluid pharmacokinetics of the novel anticonvulsant levetiracetam (ucb L059) in the rat. Epilepsy Res. 1999;34:161–168.
    1. DOHENY H.C., WHITTINGTON M.A., JEFFERYS J.G.R., PATSALOS P.N. Levetiracetam in a chronic model of epilepsy. Epilepsia. 1997;38 Suppl. 8:30.
    1. GALLO J.M., SANZGIRI Y., HOWERTH E.W., FINCO T.S., WILSON J., JOHNSON J., TACKETT R., BUDSBERG S.C. Serum, cerebrospinal fluid, and brain concentrations of a new zidovudine formulation following chronic administration via an implantable pump in dogs. J. Pharm. Sci. 1992;81:11–15.
    1. GODEL H., SEITZ P., VERHOEF M. Automated amino acid analysis using combined FMOC-CL precolumn derivatization. LC/GC Internat. 1992;5:44–49.
    1. GOWER A.J., HIRSCH E., BOEHRER A., NOYER M., MARESCAUX C. Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res. 1995;22:207–213.
    1. GOWER A.J., MATAGNE A. Levetiracetam (ucb LO59): anticonvulsant effects are mediated by the parent compound. Epilepsia. 1994;35 Suppl. 7:75.
    1. GOWER A.J., NOYER M., VERLOES R., GOBERT J., WULFERT E. ucb L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur. J. Pharmacol. 1992;222:193–203.
    1. GRANT R., SHORVON S.D. Efficacy and tolerability of 1000–4000 mg per day of levetiracetam as add-on therapy in patients with refractory epilepsy. Epilepsy Res. 2000;42:89–95.
    1. GUR E., DREMENCOV E., LERER B., NEWMAN M.E. Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Eur. J. Pharmacol. 1999;372:17–24.
    1. HUTSON P.H., CURZON G. Concurrent determination of effects of p-chloramphetamine on central extracellular 5-hydroxytraptamine concentration and behaviour. Br. J. Pharmacol. 1989;96:801–806.
    1. IPPONI A., LAMBERTI C., MEDICA A., BARTOLINI A., MALMBERG-AIELLO P. Tiagabine antinociception in rodents depends on GABA(B) receptor activation: parallel antinociception testing and medial thalamus GABA microdialysis. Eur. J. Pharmacol. 1999;368:205–211.
    1. KASTELEIJN-NOLST TRENITE D.G.A., MARESCAUX C., STODIECK S., EDELBROEK P.M., OOSTING J. Photosensitive epilepsy: a model to study the effect of antiepileptic drugs. Evaluation of the piracetam analogue, levetiracetam. Epilepsy Res. 1996;25:225–230.
    1. KLITGAARD H., MATAGNE A., GOBERT J., WULFERT E. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur. J. Pharmacol. 1998;353:191–206.
    1. KLOCKOWSKI P.M., LEVY G. Kinetics of drug action in disease states. XXIV. Pharmacodynamics of diazepam and its active metabolites in rats. J. Pharmacol. Exp. Ther. 1988;244:912–918.
    1. LOSCHER W., HONACK D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur. J. Pharmacol. 1993;232:147–158.
    1. LOSCHER W., HONACK D., BLOMS-FUNKE P. The novel antiepileptic drug levetiracetam (ucbL059) induces alterations in GABA metabolism and turnover in discrete areas of rat brain and reduces neuronal activity in substantia nigra pars reticulata. Brain Res. 1996;735:208–216.
    1. LOSCHER W., HONACK D., RUNFELDT C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. J. Pharmacol. Exp. Ther. 1998;284:474–479.
    1. MARGINEANU D.G., WULFERT E. ucb L059, a novel anticonvulsant, reduces bicuculline-induced hyperexcitability in rat hippocampal CA3 in vivo. Eur. J. Pharmacol. 1995;286:321–326.
    1. MARGINEANU D.G., WULFERT E. Inhibition by levetiracetam of a non-GABAA receptor-associated epileptiform effect of bicuculline in rat hippocampus. Br. J. Pharmacol. 1997;122:1146–1150.
    1. MARSON A.G., CHADWICK D.W. New drug treatments for epilepsy. J. Neurol. Neurosurg. Psychiat. 2001;70:143–148.
    1. NOYER M., GILLARD M., MATAGNE A., HENICHART J.P., WULFERT E. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur. J. Pharmacol. 1995;286:137–146.
    1. OSBORNE P.G., O'CONNOR W.T., DREW K.L., UNGERSTEDT U. An in vivo microdialysis characterization of extracellular dopamine and GABA in dorsolateral striatum of awake freely moving and halothane anaesthetised rats. J. Neurosci. Meth. 1990;34:99–105.
    1. PATSALOS P.N.The new generation of anti-epileptic drugs Emerging Drugs: The Prospect for Improved Medicines. Volume 4 1999London: Ashley Publications Ltd; 87–106.ed. Bowman, W.C., Fitzgerald, J.D. & Taylor, J.B. pp
    1. PATSALOS P.N. Pharmacokinetic profile of levetiracetam: Toward ideal characteristics. Pharmacol. Ther.. 2000;85:77–85.
    1. PATSALOS P.N., ABED W.T., ALAVIJEH M.S., O'CONNELL M.T. The use of microdialysis for the study of drug kinetics: some methodological consideration illustrated with antipyrine in rat frontal cortex. Br. J. Pharmacol. 1995;115:503–509.
    1. PATSALOS P.N., ALAVIJEH M.S., SEMBA J., LOLIN Y.I. A freely moving and behaving rat model for the chronic and simultaneous study of drug pharmacokinetics (blood) and neuropharmacokinetics (cerebrospinal fluid): hematological and biochemical characterization and kinetic evaluation using carbamazepine. J. Pharmacol. Toxicol. Methods. 1992;28:21–28.
    1. PAXINOS G., WATSON C. The Rat Brain in Stereotaxic Coordinates 1986San Diego: Academic Press; Second Edition
    1. RATNARAJ N., DOHENY H.C., PATSALOS P.N. A micromethod for the determination of the new antiepileptic drug levetiracetam (ucb L059) in serum or plasma by high performance liquid chromatography. Ther. Drug Monit. 1996;18:154–157.
    1. REITH M.E.A., LI M.Y., YAN Q.S. Extracellular dopamine, norepinephrine, and serotonin in the ventral tegmental area and nucleus acumbens of freely-moving rats during intracerebral dialysis following systemic administration of cocaine and other uptake blockers. Psychopharmacology. 1997;134:309–317.
    1. ROCHA L., ONDARZA-ROVIRA R., MAIDMENT N.T. Gabapentin modifies extracellular opioid peptide content in amygdala: a microdialysis study. Epilepsy Res. 1999;35:13–29.
    1. ROWLEY H.L., KILPATRICK I.C., NEEDHAM P.L., HEAL D.J. Elevation of extracellular cortical noradrenaline may contribute to the antidepressant activity of zotepine: an in vivo microdialysis study in freely moving rats. Neuropharmacology. 1998;37:937–944.
    1. ROWLEY H.L., MARTIN K.F., MARSDEN C.A. Decreased GABA release following toni-clonic seizures is associated with an increase in extracellular glutamate in rat hippocampus in vivo. Neuroscience. 1995;68:415–422.
    1. SANDER J.W.A.S., SHORVON S.D. Incidence and prevalence studies in epilepsy and their methodological problems: a review. J. Neurol. Neurosurg. Psychiat. 1987;50:829–839.
    1. SHARIEF M.K., SINGH P., SANDER J.W.A.S., PATSALOS P.N., SHORVON S.D. Efficacy and tolerability study of ucb L059 in patients with refractory epilepsy. J. Epilepsy. 1996;9:106–112.
    1. SHORVON S.D., LOWENTHAL A., JANZ D., BIELEN E., LOIUSEAU P. Multicentre double-blind, randomized, placebo-controlled trial of levetiracetam as add-on therapy in patients with refractory seizures. Epilepsia. 2000;41:1179–1186.
    1. SILLS G.J., LEACH J.P., FRASER C.M., FORREST G., PATSALOS P.N., BRODIE M.J. Neurochemical studies with the novel anticonvulsant levetiracetam in mouse brain. Eur. J. Pharmacol. 1997;325:35–40.
    1. SOKOMBA E.N., PATSALOS P.N., LOLIN Y.I., CURZON G. Concurrent monitoring of central carbamazepine and transmitter amine metabolism and motor activity in individual unrestrained rats using repetitive withdrawal of cerebrospinal fluid. Neuropharmacology. 1988;27:409–415.
    1. STAHLE L. Microdialysis in pharmacokinetics. Eur. J. Drug Metab. Pharmacokin. 1993;18:89–96.
    1. STAHLE L., SEGERSVARD S., UNGERSTEDT U. Drug distribution studies with microdialysis. II. Caffeine and theophylline in blood, brain and other tissues in rats. Life Sci. 1991;49:1843–1852.
    1. STEELE K.L., SCOTT D.O., LUNTE C.E. Pharmacokinetic studies of aspirin in rats using in vivo microdialysis sampling. Anal. Chim. Acta. 1991;65:2324–2328.
    1. STENKEN J.A., TOPP E.M., SOUTHARD M.X., LUNTE C.E. Examination of microdialysis sampling in a well-characterized hydrodynamic system. Anal Chem. 1993;65:2324–2328.
    1. TAYLOR D.L., DAVIES S.E.C., OBRENOVITCH T.P., DOHENY M.H., PATSALOS P.N., CLARK J.B., SYMON L. Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J. Neurochem. 1995;65:275–281.
    1. TONG X., RATNARAJ N., PATSALOS P.N. Extracellular fluid (ECF) kinetics of vigabatrin (VGT) in rat frontal cortex and hippocampus. Epilepsia. 1999;40 Suppl. 2:128.
    1. TOSSMAN U., DELIN A., ERIKSSON S., UNGERSTEDT U. Brain cortical amino acids measured by intracerebral dialysis in portocaval shunted rats. Neurochem. Res. 1987;12:265–269.
    1. WALKER C.M., ALAVIJEH M.S., SHORVON S.D., PATSALOS P.N. Microdialysis study of the neuropharmacokinetics of phenytoin in rat hippocampus and frontal cortex. Epilepsia. 1996;37:421–427.
    1. WALKER C.M., TONG X., BROWN S., SHORVON S.D., PATSALOS P.N. Comparison of single- and repeated-dose pharmacokinetics of diazepam. Epilepsia. 1998;39:283–289.
    1. WALKER C.M., TONG X., PERRY H., ALAVIJEH M.S., PATSALOS P.N. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br. J. Pharmacol. 2000;130:242–248.
    1. WANG Y., WELTY D.F. The simultaneous estimation of the influx and efflux blood–brain barrier permeabilities of gabapentin using a microdialysis – pharmacokinetic approach. Pharm. Res. 1996;13:398–403.
    1. WESTERINK B.H.C., DAMSMA G., ROLLEMA H., DE VRIES J.B., HORN A.S. Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 1987;41:1763–1776.
    1. WESTERINK B.H.C., DE VRIES J.B. Characterisatio of in vivo dopamine release as determined by brain microdialysis after acute and subchronic implantation: methodological aspects. J. Neurosci. 1988;51:863–867.

Source: PubMed

3
Se inscrever