First-Time-in-Human Study and Prediction of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment

David Tenero, Geo Derimanov, Alex Carlton, John Tonkyn, Matt Davies, Simon Cozens, Stephanie Gresham, Alison Gaudion, Adeep Puri, Morris Muliaditan, Joaquin Rullas-Trincado, Alfonso Mendoza-Losana, Andrew Skingsley, David Barros-Aguirre, David Tenero, Geo Derimanov, Alex Carlton, John Tonkyn, Matt Davies, Simon Cozens, Stephanie Gresham, Alison Gaudion, Adeep Puri, Morris Muliaditan, Joaquin Rullas-Trincado, Alfonso Mendoza-Losana, Andrew Skingsley, David Barros-Aguirre

Abstract

This first-time-in-human (FTIH) study evaluated the safety, tolerability, pharmacokinetics, and food effect of single and repeat oral doses of GSK3036656, a leucyl-tRNA synthetase inhibitor. In part A, GSK3036656 single doses of 5 mg (fed and fasted), 15 mg, and 25 mg and placebo were administered. In part B, repeat doses of 5 and 15 mg and placebo were administered for 14 days once daily. GSK3036656 showed dose-proportional increase following single-dose administration and after dosing for 14 days. The maximum concentration of drug in serum (Cmax) and area under the concentration-time curve from 0 h to the end of the dosing period (AUC0-τ) showed accumulation with repeated administration of approximately 2- to 3-fold. Pharmacokinetic parameters were not altered in the presence of food. Unchanged GSK3036656 was the only drug-related component detected in plasma and accounted for approximately 90% of drug-related material in urine. Based on total drug-related material detected in urine, the minimum absorbed doses after single (25 mg) and repeat (15 mg) dosing were 50 and 78%, respectively. Unchanged GSK3036656 represented at least 44% and 71% of the 25- and 15-mg doses, respectively. Clinical trial simulations were performed to guide dose escalation during the FTIH study and to predict the GSK3036656 dose range that produces the highest possible early bactericidal activity (EBA0-14) in the prospective phase II trial, with consideration of the predefined exposure limit. GSK3036656 was well tolerated after single and multiple doses, with no reports of serious adverse events. (This study has been registered at ClinicalTrials.gov under identifier NCT03075410.).

Keywords: EBA prediction; FTIH; GSK3036656; clinical trial simulations; dose escalation; dose rationale; food effect; pharmacokinetics; repeat dose; safety; single dose; tolerability; tuberculosis.

Copyright © 2019 Tenero et al.

Figures

FIG 1
FIG 1
Mean plasma GSK3036656 concentration-time plots (linear and semilog) for part A. Note that the lower limit of quantification (LLQ) is 10 ng/ml.
FIG 2
FIG 2
Mean plasma GSK3036656 concentration-time plots (linear and semilog) for part B (day 14). Note that the LLQ is 10 ng/ml.
FIG 3
FIG 3
Predicted early bactericidal activity of GSK3036656 in tuberculosis patients. Analysis predicted the early bactericidal activity (EBA0–14) following 14 days of treatment with 5 to 25 mg once daily, based on the estimated PK/PD relationship in mouse infection models. Box plots represent the 5th, 25th, 50th, 75th, and 95th percentiles of the simulated individual EBA0–14. Numbers in parentheses represent the reported average EBA0–14 of each reference drug at therapeutic doses. PMD, pretomanid; BDQ, bedaquiline; OPC, delamanid.

References

    1. World Health Organization. 2017. Global tuberculosis report 2017. World Health Organization, Geneva, Switzerland.
    1. Ahmad Khan F, Salim MAH, du Cros P, Casas EC, Khamraev A, Sikhondze W, Benedetti A, Bastos M, Lan Z, Jaramillo E, Falzon D, Menzies D. 2017. Effectiveness and safety of standardised shorter regimens for multidrug-resistant tuberculosis: individual patient data and aggregate data meta-analyses. Eur Respir J 50:1700061. doi:10.1183/13993003.00061-2017.
    1. Gunther G, Lange C, Alexandru S, Altet N, Avsar K, Bang D, Barbuta R, Bothamley G, Ciobanu A, Crudu V, Danilovits M, Dedicoat M, Duarte R, Gualano G, Kunst H, de Lange W, Leimane V, Magis-Escurra C, McLaughlin AM, Muylle I, Polcova V, Popa C, Rumetshofer R, Skrahina A, Solodovnikova V, Spinu V, Tiberi S, Viiklepp P, van Leth F, TBNET. 2016. Treatment outcomes in multidrug-resistant tuberculosis. N Engl J Med 375:1103–1105. doi:10.1056/NEJMc1603274.
    1. Dheda K, Limberis JD, Pietersen E, Phelan J, Esmail A, Lesosky M, Fennelly KP, Te Riele J, Mastrapa B, Streicher EM, Dolby T, Abdallah AM, Ben-Rached F, Simpson J, Smith L, Gumbo T, van Helden P, Sirgel FA, McNerney R, Theron G, Pain A, Clark TG, Warren RM. 2017. Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respir Med 5:269–281. doi:10.1016/S2213-2600(16)30433-7.
    1. Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, Becerra MC, Burgos M, Centis R, Cohen T, Cox H, D’Ambrosio L, Danilovitz M, Falzon D, Gelmanova IY, Gler MT, Grinsdale JA, Holtz TH, Keshavjee S, Leimane V, Menzies D, Migliori GB, Milstein MB, Mishustin SP, Pagano M, Quelapio MI, Shean K, Shin SS, Tolman AW, van der Walt ML, Van Deun A, Viiklepp P, Collaborative Group for Analysis of Bacteriology Data in MDR-TB Treatment. 2016. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. Eur Respir J 48:1160–1170. doi:10.1183/13993003.00462-2016.
    1. Zignol M, Dean AS, Falzon D, van Gemert W, Wright A, van Deun A, Portaels F, Laszlo A, Espinal MA, Pablos-Mendez A, Bloom A, Aziz MA, Weyer K, Jaramillo E, Nunn P, Floyd K, Raviglione MC. 2016. Twenty years of global surveillance of antituberculosis-drug resistance. N Engl J Med 375:1081–1089. doi:10.1056/NEJMsr1512438.
    1. Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, Mfinanga S, Kapata N, Mwaba P, McHugh TD, Ippolito G, Migliori GB, Maeurer MJ, Zumla A. 2018. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis 18:e183–e198. doi:10.1016/S1473-3099(18)30110-5.
    1. Ryan NJ, Lo JH. 2014. Delamanid: first global approval. Drugs 74:1041–1045. doi:10.1007/s40265-014-0241-5.
    1. Cohen J. 2013. Infectious disease. Approval of novel TB drug celebrated—with restraint. Science 339:130. doi:10.1126/science.339.6116.130.
    1. Fox GJ, Menzies D. 2013. A review of the evidence for using bedaquiline (TMC207) to treat multi-drug resistant tuberculosis. Infect Dis Ther 2:123–144. doi:10.1007/s40121-013-0009-3.
    1. Field SK. 2013. Safety and efficacy of delamanid in the treatment of multidrug-resistant tuberculosis (MDR-TB). Clin Med Insights Ther 5:137–149.
    1. Li X, Hernandez V, Rock FL, Choi W, Mak YSL, Mohan M, Mao W, Zhou Y, Easom EE, Plattner JJ, Zou W, Perez-Herran E, Giordano I, Mendoza-Losana A, Alemparte C, Rullas J, Angulo-Barturen I, Crouch S, Ortega F, Barros D, Alley MRK. 2017. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J Med Chem 60:8011–8026. doi:10.1021/acs.jmedchem.7b00631.
    1. Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ. 2012. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 92:453–488. doi:10.1016/j.tube.2012.07.003.
    1. Rullas J, Garcia JI, Beltran M, Cardona PJ, Caceres N, Garcia-Bustos JF, Angulo-Barturen I. 2010. Fast standardized therapeutic-efficacy assay for drug discovery against tuberculosis. Antimicrob Agents Chemother 54:2262–2264. doi:10.1128/AAC.01423-09.
    1. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM, Spigelman MK. 2012. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380:986–993. doi:10.1016/S0140-6736(12)61080-0.
    1. Baron KT, Gastonguay MR. 2015. Simulation from ODE-based population PK/PD and systems pharmacology models in R with mrgsolve. Abstr ACoP6, Arlington, VA, 7 October 2015.
    1. Hop CE, Wang Z, Chen Q, Kwei G. 1998. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci 87:901–903. doi:10.1021/js970486q.
    1. Diacon AH, Dawson R, Hanekom M, Narunsky K, Venter A, Hittel N, Geiter LJ, Wells CD, Paccaly AJ, Donald PR. 2011. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis 15:949–954. doi:10.5588/ijtld.10.0616.
    1. Beal S, Boeckmann A, Sheiner L. 2009. NONMEM users guides (1989-2009). NONMEM, Ellicott City, MD.
    1. Carlton A, Tenero D, Wang Y, Goyal N. 2018. Predictive performance of Bayesian and population pharmacokinetic (POP PK) analysis approaches for prediction of exposure during first time in human (FTiH) dose escalation. Abstr PSI Conf 2018, Amsterdam, The Netherlands, 3 to 6 June 2018.
    1. Lindbom L, Pihlgren P, Jonsson EN. 2005. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79:241–257. doi:10.1016/j.cmpb.2005.04.005.
    1. R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: .
    1. RStudio. 2012. RStudio: integrated development environment for R (version 0.96.122). RStudio, Boston, MA: .
    1. Tenero D, Goyal N. 2018. Threading a needle—selecting doses in early development of an anti-tuberculosis agent—maximizing probability of technical success while balancing safety, efficacy and sample size. Abstr ACoP9, San Diego, CA, 14 October 2018.
    1. Muliaditan M, Della Pasqua O. 2017. Model-based rationale for drug combinations in tuberculosis, abstr 7272. Abstr PAGE 2017, 6 June 2017.
    1. Palencia A, Li X, Bu W, Choi W, Ding CZ, Easom EE, Feng L, Hernandez V, Houston P, Liu L, Meewan M, Mohan M, Rock FL, Sexton H, Zhang S, Zhou Y, Wan B, Wang Y, Franzblau SG, Woolhiser L, Gruppo V, Lenaerts AJ, O’Malley T, Parish T, Cooper CB, Waters MG, Ma Z, Ioerger TR, Sacchettini JC, Rullas J, Angulo-Barturen I, Perez-Herran E, Mendoza A, Barros D, Cusack S, Plattner JJ, Alley MR. 2016. Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase. Antimicrob Agents Chemother 60:6271–6280. doi:10.1128/AAC.01339-16.
    1. Zhang T, Li SY, Nuermberger EL. 2012. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLoS One 7:e29774. doi:10.1371/journal.pone.0029774.
    1. Swanson RV, Ammerman NC, Ngcobo B, Adamson J, Moodley C, Dorasamy A, Moodley S, Mgaga Z, Bester LA, Singh SD, Almeida DV, Grosset JH. 2016. Clofazimine contributes sustained antimicrobial activity after treatment cessation in a mouse model of tuberculosis chemotherapy. Antimicrob Agents Chemother 60:2864–2869. doi:10.1128/AAC.00177-16.
    1. Diacon AH, Dawson R, Hanekom M, Narunsky K, Maritz SJ, Venter A, Donald PR, van Niekerk C, Whitney K, Rouse DJ, Laurenzi MW, Ginsberg AM, Spigelman MK. 2010. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother 54:3402–3407. doi:10.1128/AAC.01354-09.

Source: PubMed

3
Se inscrever