Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks

Michael J Zurawlew, Jessica A Mee, Neil P Walsh, Michael J Zurawlew, Jessica A Mee, Neil P Walsh

Abstract

Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.

Keywords: acclimation; decay; heat; hot water; running; thermal strain; thermoregulation.

Figures

FIGURE 1
FIGURE 1
Influence of heat acclimation by post-exercise hot water immersion on resting rectal core temperature (Tre) (A–C) and end-exercise Tre(D–F) following 40-min treadmill running at 65% max in the heat (33°C, 40% RH). Bars show mean ± SD (A,D) or mean ± SD of the change from PRE, at POST, WK 1, and WK 2 (B,E). Lines represent individual responses (C,F). ∗P < 0.05, ∗∗P < 0.01 less than PRE.
FIGURE 2
FIGURE 2
Influence of heat acclimation by post-exercise hot water immersion on end-exercise heart rate (A), end-exercise rating of perceived exertion (RPE) (B), end-exercise mean skin temperature (Tsk) (C) and end-exercise thermal sensation (D) following 40-min treadmill running at 65% max in the heat (33°C, 40% RH). Bars show mean ± SD of the change from PRE, at POST, WK 1, and WK 2. ∗P < 0.05, ∗∗P < 0.01 less than PRE (post hoc effect).
FIGURE 3
FIGURE 3
Influence of heat acclimation by post-exercise hot water immersion on total hemoglobin (Hb) mass (A), blood volume (B) and plasma volume (C) at rest. Bars show mean ± SD at PRE and POST.
FIGURE 4
FIGURE 4
Influence of heat acclimation by post-exercise hot water immersion on mean local forearm sweating rate reported as a function of esophageal core temperature (Tes) (A) and as a function of the change in esophageal core temperature (Δ Tes) (B) during 12 min (1 min average) of submaximal treadmill running (65% max) in the heat (33°C, 40% RH) before (PRE) and after (POST) heat acclimation. Error bars removed for clarity.

References

    1. Adam J. M., Fox R. H., Grimby G., Kidd D. J., Wolff H. S. (1960). Acclimatization to heat and its rate of decay in man. J. Physiol. 152 26–27.
    1. Armstrong L. E. (2005). Hydration assessment techniques. Nutr. Rev. 63 S40–S54.
    1. Armstrong L. E., Maresh C. M. (1991). The induction and decay of heat acclimatisation in trained athletes. Sports Med. 12 302–312. 10.2165/00007256-199112050-00003
    1. Baum E., Bruck K., Schwennicke H. P. (1976). Adaptive modifications in the thermoregulatory system of long-distance runners. J. Appl. Physiol. 40 404–410. 10.1152/jappl.1976.40.3.404
    1. Borg G. (1970). Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2 92–98.
    1. Bosquet L., Montpetit J., Arvisais D., Mujika I. (2007). Effects of tapering on performance: a meta-analysis. Med. Sci. Sports Exerc. 39 1358–1365. 10.1249/mss.0b013e31806010e0
    1. Buguet A., Gati R., Soubiran G., Straboni J. P., Hanniquet A. M., Livecchi-Gonnot G., et al. (1988). Seasonal changes in circadian rhythms of body temperatures in humans living in a dry tropical climate. Eur. J. Appl. Physiol. Occup. Physiol. 58 334–339. 10.1007/bf00417272
    1. Casadio J. R., Kilding A. E., Cotter J. D., Laursen P. B. (2017). From lab to real world: heat acclimation considerations for elite athletes. Sports Med. 47 1467–1476. 10.1007/s40279-016-0668-9
    1. Cheuvront S. N., Bearden S. E., Kenefick R. W., Ely B. R., Degroot D. W., Sawka M. N., et al. (2009). A simple and valid method to determine thermoregulatory sweating threshold and sensitivity. J. Appl. Physiol. 107 69–75. 10.1152/japplphysiol.00250.2009
    1. Cheuvront S. N., Chinevere T. D., Ely B. R., Kenefick R. W., Goodman D. A., McClung J. P., et al. (2008). Serum S-100beta response to exercise-heat strain before and after acclimation. Med. Sci. Sports. Exerc. 40 1477–1482. 10.1249/MSS.0b013e31816d65a5
    1. Cluver E. H. (1932). An analysis of ninety-two fatal heat-stroke cases on the Witwatersrand gold mines. S. Afr. Med. J. 6 19–22.
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates.
    1. Daanen H. A., Jonkman A. G., Layden J. D., Linnane D. M., Weller A. S. (2011). Optimising the acquisition and retention of heat acclimation. Int. J. Sports Med. 32 822–828. 10.1055/s-0031-1279767
    1. Daanen H. A. M., Racinais S., Periard J. D. (2018). Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 48 409–430. 10.1007/s40279-017-0808-x
    1. Flouris A. D., Poirier M. P., Bravi A., Wright-Beatty H. E., Herry C., Seely A. J., et al. (2014). Changes in heart rate variability during the induction and decay of heat acclimation. Eur. J. Appl. Physiol. Occup. Physiol. 114 2119–2128. 10.1007/s00421-014-2935-5
    1. Fortes M. B., Di Felice U., Dolci A., Junglee N. A., Crockford M. J., West L., et al. (2013). Muscle-damaging exercise increases heat strain during subsequent exercise heat stress. Med. Sci. Sports Exerc. 45 1915–1924. 10.1249/MSS.0b013e318294b0f8
    1. Fox R. H., Goldsmith R., Hampton I. F., Lewis H. E. (1964). The nature of the increase in sweating capacity produced by heat acclimatization. J. Physiol. 171 368–376. 10.1113/jphysiol.1964.sp007382
    1. Fox R. H., Goldsmith R., Kidd D. J., Lewis H. E. (1963). Acclimatization to heat in man by controlled elevation of body temperature. J. Physiol. 166 530–547. 10.1113/jphysiol.1963.sp007121
    1. Gagge A. P., Stolwijk J. A., Hardy J. D. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ. Res. 1 1–20. 10.1016/0013-9351(67)90002-3
    1. Garrett A. T., Goosens N. G., Rehrer N. J., Patterson M. J., Cotter J. D. (2009). Induction and decay of short-term heat acclimation. Eur. J. Appl. Physiol. 107 659–670. 10.1007/s00421-009-1182-7
    1. Gerrett N., Kingma B. R. M., Sluijter R., Daanen H. A. M. (2019). Ambient conditions prior to Tokyo 2020 Olympic and Paralympic Games: considerations for acclimation or acclimatization strategies. Front. Physiol 10:414. 10.3389/fphys.2019.00414
    1. Givoni B., Goldman R. F. (1973). Predicting effects of heat acclimatization on heart rate and rectal temperature. J. Appl. Physiol. 35 875–879. 10.1152/jappl.1973.35.6.875
    1. Hollies N. R. S., Goldman R. F. G. (1977). “Psychological scaling in comfort assessment,” in Clothing Comfort: Interaction of Thermal, Ventilation, Construction, and Assessment Factors, eds Hollies N. R. S., Goldman R. F. G. (Ann Arbor, MI: Ann Arbor Science Publishers; ), 107–120.
    1. Horowitz M. (2016). Epigenetics and cytoprotection with heat acclimation. J. Appl. Physiol. 120 702–710. 10.1152/japplphysiol.00552.2015
    1. International Organization for Standardization (2004). Ergonomics - Evaluation of Thermal Strain by Physiological Measurements (ISO Standard no. 9886). Available at: (accessed September 30, 2015).
    1. Lorenzo S., Halliwill J. R., Sawka M. N., Minson C. T. (2010). Heat acclimation improves exercise performance. J. Appl. Physiol. 109 1140–1147. 10.1152/japplphysiol.00495.2010
    1. Mujika I., Padilla S. (2003). Scientific bases for precompetition tapering strategies. Med. Sci. Sports Exerc. 35 1182–1187. 10.1249/01.MSS.0000074448.73931.11
    1. Neal R. A., Massey H. C., Tipton M. J., Young J. S., Corbett J. (2016). Effect of permissive dehydration on induction and decay of heat acclimation, and temperate exercise performance. Front. Physiol. 7:564. 10.3389/fphys.2016.00564
    1. Nielsen B., Strange S., Christensen N. J., Warberg J., Saltin B. (1997). Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflugers Arch. 434 49–56. 10.1007/s004240050361
    1. Pandolf K. B., Burse R. L., Goldman R. F. (1977). Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics 20 399–408. 10.1080/00140137708931642
    1. Patterson M. J., Stocks J. M., Taylor N. A. (2004). Humid heat acclimation does not elicit a preferential sweat redistribution toward the limbs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286 R512–R518. 10.1152/ajpregu.00359.2003
    1. Periard J. D., Racinais S., Sawka M. N. (2015). Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 25(Suppl. 1), 20–38. 10.1111/sms.12408
    1. Periard J. D., Racinais S., Timpka T., Dahlstrom O., Spreco A., Jacobsson J., et al. (2017). Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br. J. Sports Med. 51 264–270. 10.1136/bjsports-2016-096579
    1. Poirier M. P., Gagnon D., Friesen B. J., Hardcastle S. G., Kenny G. P. (2015). Whole-body heat exchange during heat acclimation and its decay. Med. Sci. Sports Exerc. 47 390–400. 10.1249/MSS.0000000000000401
    1. Pryor J. L., Pryor R. R., Vandermark L. W., Adams E. L., VanScoy R. M., Casa D. J., et al. (2019). Intermittent exercise-heat exposures and intense physical activity sustain heat acclimation adaptations. J. Sci. Med. Sport 22 117–122. 10.1016/j.jsams.2018.06.009
    1. Ramanathan N. L. (1964). A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 19 531–533. 10.1152/jappl.1964.19.3.531
    1. Regan J. M., Macfarlane D. J., Taylor N. A. (1996). An evaluation of the role of skin temperature during heat adaptation. Acta. Physiol. Scand. 158 365–375. 10.1046/j.1365-201X.1996.561311000.x
    1. Saunders P. U., Garvican-Lewis L. A., Chapman R. F., Periard J. D. (2019). Special environments: altitude and heat. Int. J. Sport Nutr. Exerc. Metab 29 210–219. 10.1123/ijsnem.2018-2256
    1. Sawka M. N., Gonzalez R. R., Pandolf K. B. (1984). Effects of sleep deprivation on thermoregulation during exercise. Am. J. Physiol. 246 R72–R77. 10.1152/ajpregu.1984.246.1.R72
    1. Schmidt W., Prommer N. (2005). The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur. J. Appl. Physiol. 95 486–495. 10.1007/s00421-005-0050-3
    1. Scoon G. S., Hopkins W. G., Mayhew S., Cotter J. D. (2007). Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J. Sci. Med. Sport 10 259–262. 10.1016/j.jsams.2006.06.009
    1. Siemens J., Kamm G. B. (2018). Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch. 470 809–822. 10.1007/s00424-017-2101-0
    1. Solli G. S., Tonnessen E., Sandbakk O. (2017). The training characteristics of the world’s most successful female cross-country skier. Front. Physiol. 8:1069. 10.3389/fphys.2017.01069
    1. Tan C. L., Cooke E. K., Leib D. E., Lin Y. C., Daly G. E., Zimmerman C. A., et al. (2016). Warm-sensitive neurons that control body temperature. Cell 167 47–59. 10.1016/j.cell.2016.08.028
    1. Taylor N. A. (2014). Human heat adaptation. Compr. Physiol. 4 325–365. 10.1002/cphy.c130022
    1. Tonnessen E., Sylta O., Haugen T. A., Hem E., Svendsen I. S., Seiler S. (2014). The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One 9:e101796. 10.1371/journal.pone.0101796
    1. Tyler C. J., Reeve T., Hodges G. J., Cheung S. S. (2016). The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 46 1699–1724. 10.1007/s40279-016-0538-5
    1. Weller A. S., Linnane D. M., Jonkman A. G., Daanen H. A. M. (2007). Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress. Eur. J. Appl. Physiol. 102 57–66. 10.1007/s00421-007-0563-z
    1. Williams C. G., Wyndham C. H., Morrison J. F. (1967). Rate of loss of acclimatization in summer and winter. J. Appl. Physiol. 22 21–26. 10.1152/jappl.1967.22.1.21
    1. Wyndham C. H., Jacobs G. E. (1957). Loss of acclimatization after six days of work in cool conditions on the surface of a mine. J. Appl. Physiol. 11 197–198. 10.1152/jappl.1957.11.2.197
    1. Zhao Z. D., Yang W. Z., Gao C., Fu X., Zhang W., Zhou Q., et al. (2017). A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. U.S.A. 114 2042–2047. 10.1073/pnas.1616255114
    1. Zurawlew M. J., Mee J. A., Walsh N. P. (2018a). Heat acclimation by postexercise hot-water immersion: reduction of thermal strain during morning and afternoon exercise-heat stress after morning hot-water immersion. Int. J. Sports Physiol. Perform. 13 1281–1286. 10.1123/ijspp.2017-2620
    1. Zurawlew M. J., Mee J. A., Walsh N. P. (2018b). Post-exercise hot water immersion elicits heat acclimation adaptations in endurance trained and recreationally active individuals. Front. Physiol. 9:1824. 10.3389/fphys.2018.01824
    1. Zurawlew M. J., Walsh N. P., Fortes M. B., Potter C. (2016). Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand. J. Med. Sci. Sports 26 745–754. 10.1111/sms.12638

Source: PubMed

3
Se inscrever