Mass spectrometric determination of early and advanced glycation in biology

Naila Rabbani, Amal Ashour, Paul J Thornalley, Naila Rabbani, Amal Ashour, Paul J Thornalley

Abstract

Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1-5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and N(ε)-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them - amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine - particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.

Keywords: Bioinformatics; Glucose; Glycation; Hydroimidazolone; Mass spectrometry; Methylglyoxal, fructosamine; Orbitrap; Proteomics.

Figures

Fig. 1
Fig. 1
Major protein glycation processes in physiological systems. (a) Early glycation. Formation of the Schiff’s base and fructosamine (Amadori product) of lysine residues. (b) Oxidative degradation of fructosyl-lysine to Nε-carboxymethyl-lysine (CML). Similar processes occur on N-terminal amino acid residues. (c) Glycation of arginine residues by methylglyoxal with formation of dihydroxyimidazolidine and hydroimidazolone MG-H1 residues. There are related structural isomers and similar adducts formed from glyoxal and 3-deoxyglucosone [, –5]
Fig. 2
Fig. 2
Activation of arginine residues in alpha-helix domains of proteins by neighbouring group interactions with basic and acidic amino acid residues. Figure reproduced with permission from [5]
Fig. 3
Fig. 3
Fragmentation of fructosamine and hydroimidazolone glycation adducts. (a) Fragmentation of fructosyl-lysine by CID leading to formation of oxonium, pyrylium, furylium and immonium ions. (b) and (c) fragmentation of hydroimidazolones formed by methylglyoxal and glyoxal to immonium ions in CID and HCD [, –99]

References

    1. Rabbani N, Thornalley PJ. Glycation research in amino acids: a place to call home. Amino Acids. 2012;42(4):1087–1096. doi: 10.1007/s00726-010-0782-1.
    1. Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry - a user's perspective. Biochim Biophys Acta. 2014;1840(2):818–829. doi: 10.1016/j.bbagen.2013.03.025.
    1. Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003;375(3):581–592. doi: 10.1042/bj20030763.
    1. Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatisation by aminoquinolyl-N-hydroxysuccimidyl-carbamate and application to Nε-carboxymethyl-lysine- and Nε-(1-carboxyethyl)lysine-modified albumin. Biochem. J. 2002;364(1):1–14. doi: 10.1042/bj3640001.
    1. Rabbani N, Thornalley PJ. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids. 2012;42(4):1133–1142. doi: 10.1007/s00726-010-0783-0.
    1. Baynes JW, Thorpe SR, Murtiashaw MH. Nonenzymatic glucosylation of lysine residues in albumin. Methods Enzymol. 1984;106:88–98. doi: 10.1016/0076-6879(84)06010-9.
    1. Smith PR, Thornalley PJ. Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. (Studies with the model fructosamine, N -(1-deoxy-D-fructose-1-yl)hippuryl-lysine). Eur J Biochem. 1992;210(3):729–739. doi: 10.1111/j.1432-1033.1992.tb17474.x.
    1. Calvo C, Ulloa N, Campos M, Verdugo C, Ayrault-Jarrier M. The preferential site of non-enzymatic glycation of human apolipoprotein A-I in vivo. Clin Chim Acta. 1993;217(2):193–198. doi: 10.1016/0009-8981(93)90165-Z.
    1. Shuvaev VV, Fujii J, Kawasaki Y, Itoh H, Hamaoka R, Barbier A, Ziegler O, Siest G, Taniguchi N. Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. Biochim Biophys Acta. 1999;1454(3):296–308. doi: 10.1016/S0925-4439(99)00047-2.
    1. Fujita T, Suzuki K, Tada T, Yoshihara Y, Hamaoka R, Uchida K, Matuo Y, Sasaki T, Hanafusa T, Taniguchi N. Human erythrocyte Bisphosphoglycerate mutase: inactivation by glycation in vivo and in vitro. J Biochem. 1998;124(6):1237–1244. doi: 10.1093/oxfordjournals.jbchem.a022243.
    1. Acosta J, Hettinga J, Flückiger R, Krumrei N, Goldfine A, Angarita L, Halperin J. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A. 2000;97(10):5450–5455. doi: 10.1073/pnas.97.10.5450.
    1. Niemann MA, Bhown AS, Miller EJ. The principal site of glycation of human complement factor B. Biochem J. 1991;274(2):473–480. doi: 10.1042/bj2740473.
    1. O’Harte FPM, Abdel-Wahab YHA, Conlon JM, Flatt PR. Amino terminal glycation of gastric inhibitory polypeptide enhances its insulinotropic action on clonal pancreatic B-cells. Biochim Biophys Acta. 1998;1425(2):319–327. doi: 10.1016/S0304-4165(98)00084-1.
    1. O'Harte FPM, Abdel-Wahab YHA, Conlon JM, Flatt PR. Glycation of glucagon-like peptide-1(7–36)amide: characterization and impaired action on rat insulin secreting cells. Diabetologia. 1998;41(10):1187–1193. doi: 10.1007/s001250051050.
    1. Zhang X, Medzihradszky KF, Cunningham J, Lee PDK, Rognerud CL, Ou CN, Harmatz P, Witkowska HE. Characterization of glycated hemoglobin in diabetic patients: usefulness of electrospray mass spectrometry in monitoring the extent and distribution of glycation. J ChromatogrB. 2001;759(1):1–15. doi: 10.1016/S0378-4347(01)00196-7.
    1. Coletta M, Amiconi G, Bellelli A, Bertollini A, Čarsky J, Castagnola M, Condò S, Brunori M. Alteration of T-state binding properties of naturally glycated hemoglobin, HbA1c. J Mol Biol. 1988;203(1):233–239. doi: 10.1016/0022-2836(88)90104-0.
    1. Wang SH, Wang TF, Wu CH, Chen SH. In-depth comparative characterization of hemoglobin glycation in normal and diabetic bloods by LC-MSMS. J Amer Soc Mass Spectrometry. 2014;25(5):758–766. doi: 10.1007/s13361-014-0830-2.
    1. O'Harte FPM, Højrup P, Barnett CR, Flatt PR. Identification of the site of glycation of human insulin. Peptides. 1996;17(8):1323–1330. doi: 10.1016/S0196-9781(96)00231-8.
    1. Miyata T, Inagi R, Wada Y, Ueda Y, Iida Y, Takahashi M, Taniguchi N, Maeda K. Glycation of human beta 2 -microglobulin in patients with hemodialysis-associated amyloidosis: identification of the glycated sites. Biochemistry. 1994;33(40):12215–12221. doi: 10.1021/bi00206a026.
    1. Barnaby OS, Cerny RL, Clarke W, Hage DS. Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI–TOF MS. Clin Chim Acta. 2011;412(17–18):1606–1615. doi: 10.1016/j.cca.2011.05.012.
    1. Rabbani N, AntonySunil A, Rossing K, Rossing P, Tarnow L, Parving HH, Thornalley PJ. Effect of Irbesartan treatment on plasma and urinary protein glycation, oxidation and nitration markers in patients with type 2 diabetes and microalbuminuria. Amino Acids. 2011;42(5):1627–1639. doi: 10.1007/s00726-011-0857-7.
    1. Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase - identification of the invitro glycated sites. J Biol Chem. 1987;262(35):16969–16972.
    1. Abraham EC, Cherian M, Smith JB. Site selectivity in the glycation of αA-crystallin and αB-Crystallins by glucose. Biochem Biophys Res Commun. 1994;201(3):1451–1456. doi: 10.1006/bbrc.1994.1866.
    1. Casey EB, Zhao HR, Abraham EC. Role of glycine 1 and lysine 2 in the glycation of bovine g B-crystallin. J.Biol.Chem. 1995;270(35):20781–20786. doi: 10.1074/jbc.270.35.20781.
    1. Baldwin JS, Lee L, Leung TK, Muruganandam A, Mutus B. Identification of the site of nonenzymatic glycation of glutathione-peroxidase - rationalization of the glycation-related catalytic alterations on the basis of 3-dimensional protein-structure. Biochim Biophys Acta. 1995;1247(1):60–64. doi: 10.1016/0167-4838(94)00202-R.
    1. Guedes S, Vitorino R, Domingues MRM, Amado F, Domingues P. Mass spectrometry characterization of the glycation sites of bovine insulin by tandem mass spectrometry. J Am Soc Mass Spectrom. 2009;20(7):1319–1326. doi: 10.1016/j.jasms.2009.03.004.
    1. Swamy Mruthinti S, Schey KL. Mass spectroscopic identification of in vitro glycated sites of MIP. Curr Eye Res. 1997;16(9):936–941. doi: 10.1076/ceyr.16.9.936.5037.
    1. Watkins NG, Thorpe SR, Baynes JW. Glycation of amino groups in protein. (Studies on the specificity of modification of RNase by glucose) J Biol Chem. 1985;260(19):10629–10636.
    1. Frolov A, Hoffmann P, Hoffmann R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry. J Mass Spectrom. 2006;41(11):1459–1469. doi: 10.1002/jms.1117.
    1. Reiser KM, Amigable M, Last JA. Nonenzymatic glycation of type I collagen (the effects of aging on preferential glycation sites. J.Biol.Chem. 1992;267(34):24207–24216.
    1. Takahashi M, Lu Y-b, Myint T, Fujii J, Wada Y, Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry. 1995;34(4):1433–1438. doi: 10.1021/bi00004a038.
    1. Ahmed MU, Thorpe SR, Baynes JW. Identification of Nε-carboxymethyl-lysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986;261(11):4889–4894.
    1. Wells-Knecht MC, Thorpe SR, Baynes JW. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995;34(46):15134–15141. doi: 10.1021/bi00046a020.
    1. Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest. 1999;104(1):103–113. doi: 10.1172/JCI3042.
    1. Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. 2005;48(8):1590–1603. doi: 10.1007/s00125-005-1810-7.
    1. Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ. High dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia. 2004;47:2235–2246. doi: 10.1007/s00125-004-1582-5.
    1. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53(7):1506–1516. doi: 10.1007/s00125-010-1722-z.
    1. Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, Haik GM., Jr Methylglyoxal-derived hydroimidazolone advanced glycation endproducts of human lens proteins. Investig Ophthalmol Vis Sci. 2003;44(12):5287–5292. doi: 10.1167/iovs.03-0573.
    1. Lo TWC, Selwood T, Thornalley PJ. Reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem Pharmacol. 1994;48(10):1865–1870. doi: 10.1016/0006-2952(94)90584-3.
    1. Rabbani N, Thornalley PJ. Dicarbonyl proteome and genome damage in metabolic and vascular disease. Biochem Soc Trans. 2014;42(2):425–432. doi: 10.1042/BST20140018.
    1. Gallet X, Charloteaux B, Thomas A, Braseur R. A fast method to predict protein interaction sites from sequences. JMolBiol. 2000;302(4):917–926.
    1. Godfrey L, Yamada-Fowler N, Smith JA, Thornalley PJ, Rabbani N. Arginine-directed glycation and decreased HDL plasma concentration and functionality. Nutrition and diabetes. 2014;4 doi: 10.1038/nutd.2014.31.
    1. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun. 2015;458(2):221–226. doi: 10.1016/j.bbrc.2015.01.140.
    1. Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, Thornalley PJ. Conversion of low density lipoprotein to the pro-atherogenic form by methylglyoxal with increased arterial proteoglycan binding and aortal retention. Diabetes. 2011;60(7):1973–1980. doi: 10.2337/db11-0085.
    1. Dobler D, Ahmed N, Song LJ, Eboigbodin KE, Thornalley PJ. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes. 2006;55(7):1961–1969. doi: 10.2337/db05-1634.
    1. Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJ, Saleem MA, Mathieson PW, Hudson BG, Voziyan PA. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes. 2005;54(10):2952–2960. doi: 10.2337/diabetes.54.10.2952.
    1. Gangadhariah MH, Wang BL, Linetsky M, Henning C, Spanneberg R, Glomb MA, Nagaraj RH. Hydroimidazolone modification of human alpha A-crystallin: effect on the chaperone function and protein refolding ability. Biochim Biophys Acta. 2010;1802(4):432–441. doi: 10.1016/j.bbadis.2010.01.010.
    1. Kiselar JG, Wang X, Dubyak GR, El Sanadi C, Ghosh SK, Lundberg K, Williams WM. Modification of β-Defensin-2 by Dicarbonyls methylglyoxal and glyoxal inhibits antibacterial and chemotactic function in vitro. PLoS One. 2015;10(8) doi: 10.1371/journal.pone.0130533.
    1. Lund T, Svindland A, Pepaj M, Jensen AB, Berg JP, Kilhovd B, Hanssen KF. Fibrin(ogen) may be an important target for methylglyoxal-derived AGE modification in elastic arteries of humans. Diabetes Vascular Disease Research. 2011;8(4):284–294. doi: 10.1177/1479164111416831.
    1. Oya-Ito T, Naito Y, Takagi T, Handa O, Matsui H, Yamada M, Shima K, Yoshikawa T. Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochim Biophys Acta. 2011;1812(7):769–781. doi: 10.1016/j.bbadis.2011.03.017.
    1. Chen Y, Ahmed N, Thornalley PJ. Peptide mapping of human hemoglobin modified minimally by methylglyoxal in vitro. AnnNYAcadSci. 2005;1043:905. doi: 10.1196/annals.1333.119.
    1. Gao Y, Wang Y. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Biochemistry. 2006;45(51):15654–15660. doi: 10.1021/bi061410o.
    1. Thangarajah H, Yao DC, Chang EI, Shi YB, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009;106(32):13505–13510. doi: 10.1073/pnas.0906670106.
    1. Oliveira L, Lages A, Gomes R, Neves H, Familia C, Coelho A, Quintas A. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochem. 2011;12(1):41. doi: 10.1186/1471-2091-12-41.
    1. Chumsae C, Gifford K, Lian W, Liu H, Radziejewski CH, Zhou ZS. Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species. Anal Chem. 2013;85(23):11401–11409. doi: 10.1021/ac402384y.
    1. Kinsky OR. Dicarbonyl Protein Adduction: Plasminogen as a Target and Metformin as a Scavenging Therapeutic in Type 2 Diabetes. PhD thesis. PhD thesis. Tucson, USA: University of Arizona; 2014.
    1. Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, Brownlee M, Preissner KT. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010;59(3):670–678. doi: 10.2337/db08-1565.
    1. Brock JWC, Cotham WE, Thorpe SR, Baynes JW, Ames JM. Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis. J Mass Spectrom. 2007;42(1):89–100. doi: 10.1002/jms.1144.
    1. Cotham WE, Metz TO, Ferguson PL, Brock JWC, Hinton DJS, Thorpe SR, Baynes JW, Ames JM. Proteomic analysis of arginine adducts on glyoxal-modified ribonuclease. Mol Cell Proteomics. 2004;3(12):1145–1153. doi: 10.1074/mcp.M400002-MCP200.
    1. Kimzey, M.J., Yassine, H.N., Riepel, B.M., Tsaprailis, G., Monks, T.J., Lau, S.S.: New site(s) of methylglyoxal-modified human serum albumin, identified by multiple reaction monitoring, alter warfarin binding and prostaglandin metabolism. Chem Biol Interact 192(1–2), 122–128 (2011).
    1. Ahmed N, Dobler D, Dean M, Thornalley PJ. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J. Biol. Chem. 2005;280(7):5724–5732. doi: 10.1074/jbc.M410973200.
    1. Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Rabbani N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem. 2007;282(42):31038–31045. doi: 10.1074/jbc.M704703200.
    1. Agalou S, Ahmed N, Babaei-Jadidi R, Dawnay A, Thornalley PJ. Profound mishandling of protein glycation degradation products in uremia and dialysis. J Amer Soc Nephrol. 2005;16(5):1471–1485. doi: 10.1681/ASN.2004080635.
    1. Teerlink T, Barto R, ten Brink HJ, Schalkwijk CG. Measurement of Nî-(carboxymethyl)lysine and Nî-(carboxyethyl)lysine in human plasma protein by stable-isotope-dilution tandem mass spectrometry. Clin Chem. 2004;50(7):1222–1228. doi: 10.1373/clinchem.2004.031286.
    1. Rabbani N, Shaheen F, Anwar A, Masania J, Thornalley PJ. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem Soc Trans. 2014;42(2):511–517. doi: 10.1042/BST20140019.
    1. Fan X, Sell DR, Zhang J, Nemet I, Theves M, Lu J, Strauch C, Halushka MK, Monnier VM. Anaerobic vs aerobic pathways of carbonyl and oxidant stress in human lens and skin during aging and in diabetes: a comparative analysis. Free Radic Biol Med. 2010;49(5):847–856. doi: 10.1016/j.freeradbiomed.2010.06.003.
    1. Henle T, Walter H, Klostermeyer H. Evaluation of the extent of the early Maillard-reaction in milk products by direct measurement of the Amadori-product lactuloselysine. ZLebensmUntersForsch. 1991;193:119–122.
    1. Rabbani N, Varma Chittari M, Bodmer CW, Zehnder D, Ceriello A, Thornalley PJ. Increased glycation and oxidative damage to apolipoprotein B100 of LDL in patients with type 2 diabetes and effect of metformin. Diabetes. 2010;59(4):1038–1045. doi: 10.2337/db09-1455.
    1. Ahmed N, Thornalley PJ. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatisation with aminoquinolyl-N-hydroxysuccimidyl-carbamate and intrinsic fluorescence. Biochem J. 2002;364:15–24. doi: 10.1042/bj3640015.
    1. Glomb MA, Pfahler C. Amides are novel protein modifications formed by physiological sugars. J Biol Chem. 2001;276(45):41638–41647. doi: 10.1074/jbc.M103557200.
    1. Scheffer PG, Bakker SJL, Heine RJ, Teerlink T. Measurement of low-density lipoprotein particle size by high-performance gel-filtration chromatography. Clin Chem. 1997;43(10):1904–1912.
    1. Krause R, Knoll K, Henle T. Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine. Eur Food Res Technol. 2003;216(4):277–283.
    1. Troise AD, Fiore A, Wiltafsky M, Fogliano V. Quantification of N epsilon-(2-furoylmethyl)-L-lysine (furosine), N epsilon-(carboxymethyl)-L-lysine (CML), N epsilon-(carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chem. 2015;188:357–364. doi: 10.1016/j.foodchem.2015.04.137.
    1. Gupta N, Pevzner PA. False discovery rates of protein identifications: a strike against the two-peptide rule. J Proteome Res. 2009;8(9):4173–4181. doi: 10.1021/pr9004794.
    1. Ong S-E, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC) Nat Protoc. 2007;1(6):2650–2660. doi: 10.1038/nprot.2006.427.
    1. Noirel J, Evans C, Salim M, Mukherjee J, Ow SY, Pandhal J, Pham TK, Biggs CA, Wright PC. Methods in quantitative proteomics: setting iTRAQ on the right track. Curr Probl Dermatol. 2011;8(1):17–30.
    1. Nahnsen S, Bielow C, Reinert K, Kohlbacher O. Tools for label-free peptide quantification. Mol Cell Proteomics. 2013;12(3):549–556. doi: 10.1074/mcp.R112.025163.
    1. Kimzey MJ, Kinsky OR, Yassine HN, Tsaprailis G, Stump CS, Monks TJ, Lau SS. Site specific modification of the human plasma proteome by methylglyoxal. Toxicol Appl Pharmacol. 2015;289(2):155–162. doi: 10.1016/j.taap.2015.09.029.
    1. Brede C, Hop B, Jørgensen K, Skadberg Ø. Measurement of glycated albumin in serum and plasma by LC-MS/MS. Scand J Clin Lab Invest. 2016;76(3):195–201. doi: 10.3109/00365513.2015.1129671.
    1. Liebler DC, Zimmerman LJ. Targeted quantitation of proteins by mass spectrometry. Biochemistry. 2013;52(22):3797–3806. doi: 10.1021/bi400110b.
    1. Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteomics. 2012;11(3):11. doi: 10.1074/mcp.M111.013722.
    1. Meyer JG. In silico proteome cleavage reveals iterative digestion strategy for high sequence coverage. ISRN Computational Biol. 2014;2014:7. doi: 10.1155/2014/960902.
    1. Johansen MB, Kiemer L, Brunak S. Analysis and prediction of mammalian protein glycation. Glycobiology. 2006;16(9):844–853. doi: 10.1093/glycob/cwl009.
    1. Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, Petyuk VA, Smith RD, Metz TO. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res. 2011;10(7):3076–3088. doi: 10.1021/pr200040j.
    1. Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40(W1):W537–W541. doi: 10.1093/nar/gks375.
    1. Harris R, Patel SU, Sadler PJ, Viles JH. Observation of albumin resonances in proton nuclear magnetic resonance spectra of human blood plasma: N-terminal assignments aided by use of modified recombinant albumin. Analyst. 1996;121(7):913–922. doi: 10.1039/an9962100913.
    1. Venkatraman J, Aggarwal K, Balaram P. Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement. Chem Biol. 2001;8(7):611–625. doi: 10.1016/S1074-5521(01)00036-9.
    1. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–342. doi: 10.1038/nature10098.
    1. Schleicher E, Wieland OH. Kinetic analysis of glycation as a tool for assesing the half-life of proteins. Biochim Biophys Acta. 1986;884(1):199–205. doi: 10.1016/0304-4165(86)90244-8.
    1. Wang Y, Yu H, Shi X, Luo Z, Lin D, Huang M. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J Biol Chem. 2013;288(22):15980–15987. doi: 10.1074/jbc.M113.467027.
    1. Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, Van Schaftingen E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes. 2000;49(10):1627–1634. doi: 10.2337/diabetes.49.10.1627.
    1. Delpierre G, Vertommen D, Communi D, Rider MH, Van Schaftingen E. Identification of fructosamine residues deglycated by fructosamine-3-kinase in human hemoglobin. J. Biol. Chem. 2004;279(26):27613–27620. doi: 10.1074/jbc.M402091200.
    1. Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24(21):2534–2536. doi: 10.1093/bioinformatics/btn323.
    1. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646–4658. doi: 10.1021/ac0341261.
    1. Roberts NB, Amara AB, Morris M, Green BN. Long-term evaluation of electrospray ionization mass spectrometric analysis of glycated hemoglobin. Clin Chem. 2001;47(2):316–321.
    1. Thornalley PJ, Argirova M, Ahmed N, Mann VM, Argirov OK, Dawnay A. Mass spectrometric monitoring of albumin in uraemia. Kidney Int. 2000;58(5):2228–2234. doi: 10.1111/j.1523-1755.2000.00398.x.
    1. Jerić I, Versluis C, Horvat Š, Heck AJR. Tracing glycoprotein structures: electrospray ionization tandem mass spectrometric analysis of sugar–peptide adducts. J Mass Spectrom. 2002;37(8):803–811. doi: 10.1002/jms.337.
    1. Horvat Š, Jakas A. Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci. 2004;10(3):119–137. doi: 10.1002/psc.519.
    1. Mennella C, Visciano M, Napolitano A, Del Castillo MD, Fogliano V. Glycation of lysine-containing dipeptides. J Pept Sci. 2006;12(4):291–296. doi: 10.1002/psc.722.
    1. Zhang QB, Frolov A, Tang N, Hoffmann R, van de Goor T, Metz TO, Smith RD. Application of electron transfer dissociation mass spectrometry in analyses of non-enzymatically glycated peptides. Rapid Commun Mass Spectrom. 2007;21(5):661–666. doi: 10.1002/rcm.2884.
    1. Cai J, Hurst HE. Identification and quantitation of N-(carboxymethyl)valine adducts in hemoglobin by gas chromatography/mass spectrometry. J Mass Spectrom. 1999;34(5):537–543. doi: 10.1002/(SICI)1096-9888(199905)34:5<537::AID-JMS806>;2-H.
    1. Brock JWC, Hinton DJS, Cotham WE, Metz TO, Thorpe SR, Baynes JW, Ames JM. Proteomic analysis of the site specificity of glycation and Carboxymethylation of ribonuclease. J Proteome Res. 2003;2(5):506–513. doi: 10.1021/pr0340173.
    1. Zhang Q, Tang N, Brock JWC, Mottaz HM, Ames JM, Baynes JW, Smith RD, Metz TO. Enrichment and analysis of Nonenzymatically glycated peptides: boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. J Proteome Res. 2007;6(6):2323–2330. doi: 10.1021/pr070112q.
    1. Goodall I.: HbA1c standardisation destination--global IFCC Standardisation. How, why, where and when--a tortuous pathway from kit manufacturers, via inter-laboratory lyophilized and whole blood comparisons to designated national comparison schemes. Clin Biochem Rev. 26(1), (2005)
    1. Myint T, Hoshi S, Ookawara T, Miyazawa N, Keiichiro M, Suzuki K, Taniguchi N. Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim Biophys Acta. 1995;1272:73–79. doi: 10.1016/0925-4439(95)00067-E.
    1. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344(1):109–116. doi: 10.1042/bj3440109.
    1. Smith PR, Thornalley PJ. Influence of pH and phosphate ions on the kinetics of enolisation and degradation of fructosamines. Studies with the model fructosamine, Nε-1-deoxy-D-fructos-1-yl hippuryllysine. Biochem Internat. 1992;28(3):429–439.
    1. Hustoft HK, Reubsaet L, Greibrokk T, Lundanes E, Malerod H. Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal. 2011;56(5):1069–1078. doi: 10.1016/j.jpba.2011.08.013.
    1. Schmidt R, Böhme D, Singer D, Frolov A. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides. J Mass Spectrom. 2015;50(3):613–624. doi: 10.1002/jms.3569.
    1. Rabbani N, Thornalley PJ. Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc. 2014;9(8):1969–1979. doi: 10.1038/nprot.2014.129.
    1. Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with Nα-acetylarginine, Nα-acetylcysteine, Nα-acetyl-lysine, and bovine serum albumin. J Biol Chem. 1994;269(51):32299–32305.
    1. Leitner A, Lindner W. Functional probing of arginine residues in proteins using mass spectrometry and an arginine-specific covalent tagging concept. Anal Chem. 2005;77(14):4481–4488. doi: 10.1021/ac050217h.
    1. Leitner A, Amon S, Rizzi A, Lindner W. Use of the arginine-specific butanedione/phenylboronic acid tag for analysis of peptides and protein digests using matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(7):1321–1330. doi: 10.1002/rcm.2967.
    1. Kilhovd BK, Giardino I, Torjesen PA, Birkeland KI, Berg TJ, Thornalley PJ, Brownlee M, Hanssen KF. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism. 2003;52(2):163–167. doi: 10.1053/meta.2003.50035.
    1. Biemel KM, Friedl DA, Lederer MO. Identification and quantification of major Maillard cross-links in human serum albumin and lens protein - evidence for glucosepane as the dominant compound. J Biol Chem. 2002;277(28):24907–24915. doi: 10.1074/jbc.M202681200.
    1. Dai Z, Wang B, Sun G, Fan X, Anderson VE, Monnier VM. Identification of glucose-derived cross-linking sites in ribonuclease a. J Proteome Res. 2008;7(7):2756–2768. doi: 10.1021/pr700874a.

Source: PubMed

3
Se inscrever