Meta-Analysis and Evidence Base for the Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in Knee Cartilage Repair: Methodological Guidelines and Quality Assessment

Mohamed E Awad, Khaled A Hussein, Inas Helwa, Mohamed F Abdelsamid, Alexandra Aguilar-Perez, Ibrahim Mohsen, Monte Hunter, Mark W Hamrick, Carlos M Isales, Mohammed Elsalanty, William D Hill, Sadanand Fulzele, Mohamed E Awad, Khaled A Hussein, Inas Helwa, Mohamed F Abdelsamid, Alexandra Aguilar-Perez, Ibrahim Mohsen, Monte Hunter, Mark W Hamrick, Carlos M Isales, Mohammed Elsalanty, William D Hill, Sadanand Fulzele

Abstract

The aim of this study is to review all the published clinical trials on autologous bone marrow mesenchymal stem cells (BM-MSCs) in the repair of cartilage lesions of the knee. We performed a comprehensive search in three electronic databases: PubMed, Medline via Ovid, and Web of Science. A systematic review was conducted according to the guidelines of PRISMA protocol and the Cochrane Handbook for Systematic Reviews of Interventions. The modified Coleman methodology score was used to assess the quality of the included studies. Meta-analysis was conducted to estimate the effect size for Pain and function change after receiving BM-MSCs. Thirty-three studies-including 724 patients of mean age 44.2 years-were eligible. 50.7% of the included patients received cultured BM-MSCs for knee cartilage repair. There was improvement in the MINORS quality score over time with a positive correlation with the publication year. Meta-analysis indicated better improvement and statistical significance in the Visual Analog Scale for Pain, IKDC Function, Tegner Activity Scale, and Lysholm Knee Score after administration of noncultured BM-MSCs when compared to evaluation before the treatment. Meanwhile, there was a clear methodological defect in most studies with an average modified Coleman methodology score (MCMS) of 55. BM-MSCs revealed a clinically relevant improvement in pain, function, and histological regeneration.

Figures

Figure 1
Figure 1
Flow chart showing search strategy and study identification, inclusion, and exclusion.
Figure 2
Figure 2
Classification of the included study-based preparation of BM-MSCs and delivery method.
Figure 3
Figure 3
(a) Box plot showing the median, quartiles, and extreme values of the modified Coleman methodology score (CMS) for each level-of-evidence rating. (b) Box plot showing the median, quartiles, and extreme values of the modified Coleman methodology score (CMS) for each type of therapy. (c) Box plot showing the median, quartiles, and extreme values of the modified Coleman methodology score (CMS) for cell handling.
Figure 4
Figure 4
Modified Coleman methodology score (CMS) for studies reporting outcome after administration of BM-MSCs for cartilage repair plotted against publication year. There is a positive correlation (r = 0.16). The correlation was not statistically significant when unweighted (P = 0.3544).
Figure 5
Figure 5
(a) Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies. (b) Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
Figure 6
Figure 6
(a) Forest plot comparing the Visual Analog Scale for Pain (VAS Pain) before and after administration of noncultured bone marrow aspirate concentrate (BMAC). (b) Forest plot comparing the International Knee Documentation Committee (IKDC) function level before and after administration of noncultured bone marrow aspirate concentrate (BMAC). (c) Forest plot comparing Tegner Activity Scale function level before and administration of noncultured bone marrow aspirate concentrate (BMAC). (d) Forest plot comparing the Lysholm Knee Score before and after administration of noncultured bone marrow aspirate concentrate (BMAC).
Figure 7
Figure 7
Guideline chart for the required data to be reported in future clinical trials.

References

    1. Koshino T., Machida J. Grading system of articular cartilage degeneration in osteoarthritis of the knee. Bulletin/Hospital for Joint Diseases. 1993;53(3):41–46.
    1. Smith B., Sigal I. R., Grande D. A. Immunology and cartilage regeneration. Immunologic Research. 2015;63(1-3):181–186. doi: 10.1007/s12026-015-8720-7.
    1. Davies-Tuck M. L., Wluka A. E., Wang Y., et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis and Cartilage. 2008;16(3):337–342. doi: 10.1016/j.joca.2007.07.005.
    1. Vos T., Flaxman A. D., Naghavi M., et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2163–2196. doi: 10.1016/S0140-6736(12)61729-2.
    1. Kotlarz H., Gunnarsson C. L., Fang H., Rizzo J. A. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis and Rheumatism. 2009;60(12):3546–3553. doi: 10.1002/art.24984.
    1. Falah M., Nierenberg G., Soudry M., Hayden M., Volpin G. Treatment of articular cartilage lesions of the knee. International Orthopaedics. 2010;34(5):621–630. doi: 10.1007/s00264-010-0959-y.
    1. Henn R. F., III, Gomoll A. H. A review of the evaluation and management of cartilage defects in the knee. The Physician and Sportsmedicine. 2011;39(1):101–107. doi: 10.3810/psm.2011.02.1867.
    1. The Cochrane Collaboration, Bellamy N., Campbell J., et al. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database of Systematic Reviews. 2006;2 doi: 10.1002/14651858.CD005328.pub2.
    1. Mithoefer K., McAdams T., Williams R. J., Kreuz P. C., Mandelbaum B. R. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. The American Journal of Sports Medicine. 2009;37(10):2053–2063. doi: 10.1177/0363546508328414.
    1. Mistry H., Connock M., Pink J., et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technology Assessment. 2017;21(6):1–294. doi: 10.3310/hta21060.
    1. Jakob R. P., Franz T., Gautier E., Mainil-Varlet P. Autologous osteochondral grafting in the knee: indication, results, and reflections. Clinical Orthopaedics and Related Research. 2002;401:170–184. doi: 10.1097/00003086-200208000-00020.
    1. Demange M., Gomoll A. H. The use of osteochondral allografts in the management of cartilage defects. Current Reviews in Musculoskeletal Medicine. 2012;5(3):229–235. doi: 10.1007/s12178-012-9132-0.
    1. Buckwalter J. A., Saltzman C., Brown T. The impact of osteoarthritis: implications for research. Clinical Orthopaedics and Related Research. 2004;427:S6–15. doi: 10.1097/01.blo.0000143938.30681.9d.
    1. Lories R. J. U. Joint homeostasis, restoration, and remodeling in osteoarthritis. Best Practice & Research. Clinical Rheumatology. 2008;22(2):209–220. doi: 10.1016/j.berh.2007.12.001.
    1. Caplan A. I. The mesengenic process. Clinics in Plastic Surgery. 1994;21(3):429–435.
    1. Heng B. C., Cao T., Lee E. H. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells. 2004;22(7):1152–1167. doi: 10.1634/stemcells.2004-0062.
    1. Mackay A. M., Beck S. C., Murphy J. M., Barry F. P., Chichester C. O., Pittenger M. F. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering. 1998;4(4):415–428. doi: 10.1089/ten.1998.4.415.
    1. Shirasawa S., Sekiya I., Sakaguchi Y., Yagishita K., Ichinose S., Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. Journal of Cellular Biochemistry. 2006;97(1):84–97. doi: 10.1002/jcb.20546.
    1. Orth P., Rey-Rico A., Venkatesan J. K., Madry H., Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. Stem Cells and Cloning: Advances and Applications. 2014;7:1–17. doi: 10.2147/SCCAA.S42880.
    1. Higgins J. P. T., editor. Cochrane Handbook for Systematic Reviews of In-terventions Version 5.1.0 [updated March 2011] The Cochrane Collaboration; 2011.
    1. Wright J. G., Swiontkowski M. F., Heckman J. D. Introducing levels of evidence to the journal. The Journal of Bone and Joint Surgery-American Volume. 2003;85(1):1–3. doi: 10.2106/00004623-200301000-00001.
    1. Kon E., Verdonk P., Condello V., et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee. The American Journal of Sports Medicine. 2009;37:156–166. doi: 10.1177/0363546509351649. 1_Supplement.
    1. Centeno C. J., Busse D., Kisiday J., Keohan C., Freeman M., Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–353.
    1. Wakitani S., Okabe T., Horibe S., et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine. 2011;5(2):146–150. doi: 10.1002/term.299.
    1. Kasemkijwattana C., Hongeng S., Kesprayura S., Rungsinaporn V., Chaipinyo K., Chansiri K. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. Journal of the Medical Association of Thailand. 2011;94(3):395–400.
    1. Enea D., Cecconi S., Calcagno S., Busilacchi A., Manzotti S., Gigante A. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. The Knee. 2015;22(1):30–35. doi: 10.1016/j.knee.2014.10.003.
    1. Wakitani S., Imoto K., Yamamoto T., Saito M., Murata N., Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis and Cartilage. 2002;10(3):199–206. doi: 10.1053/joca.2001.0504.
    1. Wong K. L., Lee K. B. L., Tai B. C., Law P., Lee E. H., Hui J. H. P. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–2028. doi: 10.1016/j.arthro.2013.09.074.
    1. Lamo-Espinosa J. M., Mora G., Blanco J. F., et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II) Journal of Translational Medicine. 2016;14(1):p. 246. doi: 10.1186/s12967-016-0998-2.
    1. Enea D., Cecconi S., Calcagno S., et al. Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate. The Knee. 2013;20(6):562–569. doi: 10.1016/j.knee.2013.04.003.
    1. Gobbi A., Chaurasia S., Karnatzikos G., Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6(2):82–97. doi: 10.1177/1947603514563597.
    1. Gobbi A., Karnatzikos G., Scotti C., Mahajan V., Mazzucco L., Grigolo B. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2(3):286–299. doi: 10.1177/1947603510392023.
    1. Gobbi A., Scotti C., Karnatzikos G., Mudhigere A., Castro M., Peretti G. M. One-step surgery with multipotent stem cells and hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surgery, Sports Traumatology, Arthroscopy. 2017;25(8):2494–2501. doi: 10.1007/s00167-016-3984-6.
    1. Kim J. D., Lee G. W., Jung G. H., et al. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. European Journal of Orthopaedic Surgery and Traumatology. 2014;24(8):1505–1511. doi: 10.1007/s00590-013-1393-9.
    1. Shapiro S. A., Kazmerchak S. E., Heckman M. G., Zubair A. C., O’Connor M. I. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. The American Journal of Sports Medicine. 2016;45(1):82–90. doi: 10.1177/0363546516662455.
    1. Skowronski J., Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells–results. Ortopedia, Traumatologia, Rehabilitacja. 2013;15(3):p. 1. doi: 10.5604/15093492.1058409.
    1. Skowronski J., Skowronski R., Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane--results. Ortopedia, Traumatologia, Rehabilitacja. 2013;15(1):69–76.
    1. Buda R., Vannini F., Cavallo M., et al. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskeletal Surgery. 2013;97(2):145–151. doi: 10.1007/s12306-013-0242-7.
    1. Gobbi A., Whyte G. P. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. The American Journal of Sports Medicine. 2016;44(11):2846–2854. doi: 10.1177/0363546516656179.
    1. Giannini S., Buda R., Vannini F., Cavallo M., Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clinical Orthopaedics and Related Research. 2009;467(12):3307–3320. doi: 10.1007/s11999-009-0885-8.
    1. Gigante A., Calcagno S., Cecconi S., Ramazzotti D., Manzotti S., Enea D. Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up. International Journal of Immunopathology and Pharmacology. 2011;24(1_Supplement 2):69–72. doi: 10.1177/03946320110241S213.
    1. Gigante A., Cecconi S., Calcagno S., Busilacchi A., Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthroscopy Techniques. 2012;1(2):e175–e180. doi: 10.1016/j.eats.2012.07.001.
    1. Haleem A. M., Singergy A. A. E., Sabry D., et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1(4):253–261. doi: 10.1177/1947603510366027.
    1. Hauser R. A. Rationale for using direct bone marrow aspirate as a proliferant for regenerative injection therapy (prolotherapy) The Open Stem Cell Journal. 2013;4(1):7–14. doi: 10.2174/1876893801304010007.
    1. Adachi N., Ochi M., Deie M., Ito Y. Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. The Journal of Rheumatology. 2005;32(8):1615–1618.
    1. Dominici M., le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905.
    1. Orozco L., Munar A., Soler R., et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells. Transplantation. 2013;95(12):1535–1541. doi: 10.1097/TP.0b013e318291a2da.
    1. Davatchi F., Abdollahi B. S., Mohyeddin M., Shahram F., Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. International Journal of Rheumatic Diseases. 2011;14(2):211–215. doi: 10.1111/j.1756-185X.2011.01599.x.
    1. Emadedin M., Aghdami N., Taghiyar L., et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Archives of Iranian Medicine. 2012;15(7):422–428.
    1. Soler R. R., Munar A., Soler R. F., et al. Treatment of knee osteoarthritis with autologous expanded bone marrow mesenchymal stem cells: 50 cases clinical and MRI results at one year follow-up. Journal of Stem Cell Research & Therapy. 2015;5(6) doi: 10.4172/2157-7633.1000285.
    1. Mehrabani D., Mojtahed Jaberi F., Zakerinia M., et al. The healing effect of bone marrow-derived stem cells in knee osteoarthritis: a case report. World Journal of Plastic Surgery. 2016;5(2):168–174.
    1. Vangsness C. T., Jr, Farr J., II, Boyd J., Dellaero D. T., Mills C. R., LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. The Journal of Bone and Joint Surgery. American Volume. 2014;96(2):90–98. doi: 10.2106/JBJS.M.00058.
    1. Lee K. B., Wang V. T., Chan Y. H., Hui J. H. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid--a prospective comparative study on safety and short-term efficacy. Annals of the Academy of Medicine, Singapore. 2012;41(11):511–517.
    1. Nejadnik H., Hui J. H., Feng Choong E. P., Tai B. C., Lee E. H. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. The American Journal of Sports Medicine. 2010;38(6):1110–1116. doi: 10.1177/0363546509359067.
    1. Brunner D., Frank J., Appl H., Schöffl H., Pfaller W., Gstraunthaler G. Serum-free cell culture: the serum-free media interactive online database. Alternatives to Animal Experimentation. 2010;27(1):53–62. doi: 10.14573/altex.2010.1.53.
    1. Jochems C. E., van der Valk J., Stafleu F. R., Baumans V. The use of fetal bovine serum: ethical or scientific problem? Alternatives to Laboratory Animals. 2002;30(2):219–227.
    1. Kuroda R., Ishida K., Matsumoto T., et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis and Cartilage. 2007;15(2):226–231. doi: 10.1016/j.joca.2006.08.008.
    1. Wakitani S., Nawata M., Tensho K., Okabe T., Machida H., Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Journal of Tissue Engineering and Regenerative Medicine. 2007;1(1):74–79. doi: 10.1002/term.8.
    1. Bieback K., Hecker A., Kocaömer A., et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells. 2009;27(9):2331–2341. doi: 10.1002/stem.139.
    1. Warnke P. H., Humpe A., Strunk D., et al. A clinically-feasible protocol for using human platelet lysate and mesenchymal stem cells in regenerative therapies. Journal of Cranio-Maxillo-Facial Surgery. 2013;41(2):153–161. doi: 10.1016/j.jcms.2012.07.003.
    1. Lundquist R., Dziegiel M. H., Agren M. S. Bioactivity and stability of endogenous fibrogenic factors in platelet-rich fibrin. Wound Repair and Regeneration. 2008;16(3):356–363. doi: 10.1111/j.1524-475X.2007.00344.x.
    1. Varma H. S., Dadarya B., Vidyarthi A. The new avenues in the management of osteo-arthritis of knee--stem cells. Journal of the Indian Medical Association. 2010;108(9):583–585.
    1. Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology. 2007;213(2):341–347. doi: 10.1002/jcp.21200.
    1. Chua K. H., Zaman Wan Safwani W. K., Hamid A. A., Shuhup S. K., Mohd Haflah N. H., Mohd Yahaya N. H. Retropatellar fat pad-derived stem cells from older osteoarthritic patients have lesser differentiation capacity and expression of stemness genes. Cytotherapy. 2014;16(5):599–611. doi: 10.1016/j.jcyt.2013.08.013.
    1. Im G. I., Jung N. H., Tae S. K. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Engineering. 2006;12(3):527–536. doi: 10.1089/ten.2006.12.527.
    1. Kafienah W., Mistry S., Dickinson S. C., Sims T. J., Learmonth I., Hollander A. P. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis and Rheumatism. 2007;56(1):177–187. doi: 10.1002/art.22285.
    1. Bernardo M. E., Zaffaroni N., Novara F., et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research. 2007;67(19):9142–9149. doi: 10.1158/0008-5472.CAN-06-4690.
    1. Vandenbroucke J. P., von Elm E., Altman D. G., et al. Strengthening the reporting of observational studies in epidemiology (strobe): explanation and elaboration. Annals of Internal Medicine. 2007;147(8) doi: 10.7326/0003-4819-147-8-200710160-00010-w1.
    1. Moher D., Hopewell S., Schulz K. F., et al. CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(mar23 1):p. c869. doi: 10.1136/bmj.c869.
    1. Saleh K. J., Davis A. Measures for pain and function assessments for patients with osteoarthritis. Journal of the American Academy of Orthopaedic Surgeons. 2016;24(11):e148–e162. doi: 10.5435/JAAOS-D-16-00303.

Source: PubMed

3
Se inscrever