Cross-Sectional Analysis of the Correlation Between Daily Nutrient Intake Assessed by 7-Day Food Records and Biomarkers of Dietary Intake Among Participants of the NU-AGE Study

Rita Ostan, Giulia Guidarelli, Enrico Giampieri, Catia Lanzarini, Agnes A M Berendsen, Olga Januszko, Amy Jennings, Noëlle Lyon, Elodie Caumon, Rachel Gillings, Ewa Sicinska, Nathalie Meunier, Edith J M Feskens, Barbara Pietruszka, Lisette C P G M de Groot, Susan Fairweather-Tait, Miriam Capri, Claudio Franceschi, Aurelia Santoro, Rita Ostan, Giulia Guidarelli, Enrico Giampieri, Catia Lanzarini, Agnes A M Berendsen, Olga Januszko, Amy Jennings, Noëlle Lyon, Elodie Caumon, Rachel Gillings, Ewa Sicinska, Nathalie Meunier, Edith J M Feskens, Barbara Pietruszka, Lisette C P G M de Groot, Susan Fairweather-Tait, Miriam Capri, Claudio Franceschi, Aurelia Santoro

Abstract

Methods for measuring diet composition and quantifying nutrient intake with sufficient validity are essential to study the association between nutrition and health outcomes and risk of diseases. 7-day food records provides a quantification of food actually and currently consumed and is interesting for its use in intervention studies to monitor diet in a short-term period and to guide participants toward changing their intakes. The objective of this study is to analyze the correlation/association between the daily intake of selected nutrients (collected by a 7-day food records plus a mineral/vitamin supplementation questionnaire) and estimates of energy expenditure as well as blood and urine biomarkers of dietary intakes in 1,140 healthy elderly subjects (65-79 years) at baseline of the NU-AGE intervention study (NCT01754012, clinicaltrials.gov). The results show that: the daily intake of energy correlated significantly with predicted total energy expenditure (pTEE) (ρ = 0.459, p < 0.001, and q < 0.001); protein intake correlated significantly with the ratio of 24 h urinary urea to creatinine excretion (ρ = 0.143 for total protein intake, ρ = 0.296 for animal protein intake, and ρ = 0.359 for protein intake/body weight, p < 0.001 and q < 0.001 for each correlation); vitamin B12 and folate intakes correlated significantly with their serum concentrations (ρ = 0.151 and ρ = 0.363, respectively; p < 0.001 and q < 0.001 for each correlation); sodium and potassium intakes correlated significantly with their 24 h urinary excretion (ρ = 0.298 and ρ = 0.123, respectively; p < 0.001 and q < 0.001 for each correlation); vitamin B12 and folate intakes were negatively associated with plasma homocysteine measure (p = 0.001 and p = 0.004, respectively); stratifying subjects by gender, the correlations between energy intake and pTEE and between potassium intake and its 24 h urinary excretion lost their significance in women. Even if the plasma and urinary levels of these nutrients depend on several factors, the significant correlations between daily reported intake of nutrients (protein, vitamin B12, folate, and sodium) and their blood/urinary markers confirmed that the 7-day food records (plus a supplementation questionnaire) provides reliable data to evaluate short-term current dietary intake in European elderly subjects and it can be exploited to guide and monitor NU-AGE participants through the shift of their diet according NU-AGE recommendations.

Keywords: 7-day food records; Mediterranean diet; NU-AGE; aging; nutrient intake.

Figures

Figure 1
Figure 1
Scatter plot of (A) energy intake and pTEE, (B), total protein intake and urea:creatinine excretion, (C) protein intake/BW (g/kg BW) and urea:creatinine excretion, (D) animal protein intake and urea:creatinine excretion, (E) vitamin B12 intake and serum level of vitamin B12, (F) folate intake and serum level of folate, (G) potassium intake and urinary potassium and (H) sodium intake and urinary sodium. Data are shown for men (in blue) and women (in red).

References

    1. Anderson O. S., Sant K. E., Dolinoy D. C. (2012). Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853–859. 10.1016/j.jnutbio.2012.03.003
    1. Barnabé A., Cláudia A., Aléssio M., Bittar L. F., De B., Mazetto M., et al. . (2015). Folate, Vitamin B12 and Homocysteine status in the post-folic acid fortification era in different subgroups of the Brazilian population attended to at a public health care center. Nutr. J. 14:19. 10.1186/s12937-015-0006-3
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing on JSTOR. J. R. Stat. Soc. Ser. B 57, 289–300.
    1. Berendsen A., Santoro A., Pini E., Cevenini E., Ostan R., Pietruszka B., et al. (2014). Reprint of: a parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people: design of the NU-AGE dietary intervention study. Mech. Ageing Dev. 136–137, 14–21. 10.1016/j.mad.2014.03.001
    1. Bingham S. A., Gill C., Welch A., Day K., Cassidy A., Khaw K. (2017). Comparison of dietary assessment methods in nutritional epidemiology : weighed records v. 24 h recalls, food-frequency questionnaires and estimated-diet records. Br. J. Nutr. 72, 619–643. 10.1079/BJN19940064
    1. Binia A., Jaeger J., Hu Y., Singh A., Zimmermann D. (2015). Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. J. Hypertens. 33, 1509–1520. 10.1097/HJH.0000000000000611
    1. Bonganha V., Libardi C. A., Santos C. F., De Souza G. V., Conceição M. S., Chacon-Mikahil M. P. T., et al. . (2016). Predictive equations overestimate the resting metabolic rate in postmenopausal women. J Nutr Heal. Aging 17, 211–214. 10.1007/s12603-012-0395-3
    1. Davis C., Bryan J., Hodgson J., Murphy K. (2015). Definition of the Mediterranean diet: a literature review. Nutrients 7, 9139–9153. 10.3390/nu7115459
    1. Day N., McKeown N., Wong M., Welch A., Bingham S. (2001). Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int. J. Epidemiol. 30, 309–317. 10.1093/ije/30.2.309
    1. de Benoist B. (2008). Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 29, S238–S244. 10.1177/15648265080292S129
    1. Deer R. R., Volpi E. (2015). Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 18, 248–253. 10.1097/MCO.0000000000000162
    1. Di Girolamo F. G., Situlin R., Fiotti N., Tence M., De Colle P., Mearelli F., et al. . (2017). Higher protein intake is associated with improved muscle strength in elite senior athletes. Nutrition 42, 82–86. 10.1016/j.nut.2017.05.003
    1. Diedenhofen B., Musch J. (2015). Cocor: a comprehensive solution for the statistical comparison of correlations. PLoS ONE 10:e0121945. 10.1371/journal.pone.0121945
    1. Edney L., Burns N., Danthiir V. (2015). Subjective well-being in older adults: folate and vitamin B12 independently predict positive affect. Br. J. Nutr. 114, 1321–1328. 10.1017/S0007114515002949
    1. Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., Ottaviani E., et al. . (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254. 10.1111/j.1749-6632.2000.tb06651.x
    1. Frankenfield D. C. (2013). Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. Clin. Nutr. 32, 976–982. 10.1016/j.clnu.2013.03.022
    1. Fried L. P., Tangen C. M., Walston J., Newman A. B., Hirsch C., Gottdiener J., et al. . (2001). Frailty in older adults: evidence for a phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 56, M146–M156.
    1. Goris A. H., Westerterp K. R. (1999). Underreporting of habitual food intake is explained by undereating in highly motivated lean women. J. Nutr. 129, 878–882. 10.1093/jn/129.4.878
    1. Goris A. H., Westerterp-Plantenga M. S., Westerterp K. R. (2000). Undereating and underrecording of habitual food intake in obese men: selective underreporting of fat intake. Am. J. Clin. Nutr. 71, 130–134. 10.1093/ajcn/71.1.130
    1. Haller J. (1999). The Vitamin status and its adequacy in the elderly: an international overview. Int. J. Vitam. Nutr. Res. 69, 160–168. 10.1024/0300-9831.69.3.160
    1. James W. P., Ralph A., Sanchez-Castillo C. P. (1987). The dominance of salt in manufactured food in the sodium intake of affluent societies. Lancet 1, 426–429. 10.1016/S0140-6736(87)90127-9
    1. Jenab M., Slimani N., Bictash M., Ferrari P., Bingham S. A. (2009). Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum. Genet. 125, 507–525. 10.1007/s00439-009-0662-5
    1. John K. A., Cogswell M. E., Campbell N. R., Nowson C. A., Legetic B., Hennis A. J., et al. . (2016). Accuracy and usefulness of select methods for assessing complete collection of 24-hour urine: a systematic review. J. Clin. Hypertens. 18, 456–467. 10.1111/jch.12763
    1. Johnston J. D. (2014). Physiological responses to food intake throughout the day. Nutr. Rev. 27, 107–118. 10.1017/S0954422414000055
    1. Kaaks R., Riboli E. (2005). Epidemiologic studies of nutrition and cancer: let us not throw out the baby with the bath water. Int. J. Cancer 116, 662–664. 10.1002/ijc.21027
    1. Kennedy B. K., Berger S. L., Brunet A., Campisi J., Cuervo A. M., Epel E. S., et al. . (2014). Geroscience: linking aging to chronic disease. Cell 159, 709–713. 10.1016/j.cell.2014.10.039
    1. Kennedy D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—a review. Nutrients 8:68. 10.3390/nu8020068
    1. Kim J., Stewart R., Kim S., Yang S., Shin I., Yoon J. (2008). Predictive value of folate, vitamin B12 and homocysteine levels in late-life depression. Br. J. Psychiatry 192, 268–274. 10.1192/bjp.bp.107.039511
    1. Kung Y., Ando N., Doukov T. I., Blasiak L. C., Bender G., Seravalli J., et al. . (2012). Visualizing molecular juggling within a B12-dependent methyltransferase complex. Nature 484, 265–269. 10.1038/nature10916
    1. Lee P. H., Chan C. W. (2016). Energy intake, energy required and mortality in an older population. Public Health Nutr. 19, 3178–3184. 10.1017/S1368980016001750
    1. Lerchl K., Rakova N., Dahlmann A., Rauh M., Goller U., Basner M., et al. . (2015). Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 66, 850–857. 10.1161/HYPERTENSIONAHA.115.05851
    1. Magriplis E., Farajian P., Pounis G. D., Risvas G., Panagiotakos D. B., Zampelas A. (2011). High sodium intake of children through “hidden” food sources and its association with the Mediterranean diet: the GRECO study. J. Hypertens. 29, 1069–1076. 10.1097/HJH.0b013e328345ef35
    1. Martucci M., Ostan R., Biondi F., Bellavista E., Fabbri C., Bertarelli C., et al. . (2017). Mediterranean diet and inflammaging within the hormesis paradigm. Nutr. Rev. 75, 442–455. 10.1093/nutrit/nux013
    1. Mattes R. D., Donnelly D. (1991). Relative contributions of dietary sodium sources. J. Am. Coll. Nutr. 10, 383–393. 10.1080/07315724.1991.10718167
    1. McKeown N. M., Day N. E., Welch A. A., Runswick S. A., Luben R. N., Mulligan A. A., et al. . (2001). Use of biological markers to validate self-reported dietary intake in a random sample of the European Prospective Investigation into Cancer United Kingdom Norfolk cohort. Am. J. Clin. Nutr. 74, 188–196. 10.1093/ajcn/74.2.188
    1. Mei W., Rong Y., Jinming L., Yongjun L., Hui Z. (2010). Effect of homocysteine interventions on the risk of cardiocerebrovascular events: a meta-analysis of randomised controlled trials. Int. J. Clin. Pract. 64, 208–215. 10.1111/j.1742-1241.2009.02207.x
    1. Mendonça N., Hill T. R., Granic A., Davies K., Collerton J., Mathers J. C., et al. . (2016a). Macronutrient intake and food sources in the very old: analysis of the Newcastle 85+ Study. Br. J. Nutr. 115, 2170–2180. 10.1017/S0007114516001379
    1. Mendonça N., Hill T. R., Granic A., Davies K., Collerton J., Mathers J. C., et al. . (2016b). Micronutrient intake and food sources in the very old: analysis of the Newcastle 85+ Study. Br. J. Nutr. 116, 751–761. 10.1017/S0007114516002567
    1. Mendonça N., Mathers J. C., Adamson A. J., Martin-Ruiz C., Seal C. J., Jagger C., et al. . (2016c). Intakes of folate and vitamin b12 and biomarkers of status in the very old: the newcastle 85+ study. Nutr. Hosp. Nutr. Hosp 8:E604. 10.3390/nu8100604
    1. Mifflin M. D., St Jeor S. T., Hill L. A., Scott B. J., Daugherty S. A., Koh Y. O. (1990). A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 51, 241–247. 10.1093/ajcn/51.2.241
    1. Monti D., Ostan R., Borelli V., Castellani G., Franceschi C. (2017). Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 165(Pt. B), 129–138. 10.1016/j.mad.2016.12.008
    1. Moretti R., Torre P., Antonello R. M., Cattaruzza T., Cazzato G., Bava A. (2004). Vitamin B12 and folate depletion in cognition: a review. Neurol. India 52, 310–318.
    1. Okayama A., Okuda N., Miura K., Okamura T., Hayakawa T., Akasaka H., et al. . (2016). Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan: the NIPPON DATA80 cohort study. BMJ Open 6:e011632. 10.1136/bmjopen-2016-011632
    1. O'Leary F., Samman S. (2010). Vitamin B12 in health and disease. Nutrients 2, 299–316. 10.3390/nu2030299
    1. Ortega R. M., Pérez-Rodrigo C., López-Sobaler A. M. (2015). Dietary assessment methods: dietary records. Nutr. Hosp. 31(Supl. 3), 38–45. 10.3305/nh.2015.31.sup3.8749
    1. Ostan R., Lanzarini C., Pini E., Scurti M., Vianello D., Bertarelli C., et al. . (2015). Inflammaging and Cancer: a challenge for the mediterranean diet. Nutrients 7, 2589–2621. 10.3390/nu7042589
    1. Pandey P., Pradhan S. (2006). Homocysteine:possible modifyable risk factor in vascular Dementia. Ann. Neurosci. 13, 12–18. 10.5214/ans.0972.7531.2006.130103
    1. Park J. Y., Vollset S. E., Melse-Boonstra A., Chajès V., Ueland P. M., Slimani N. (2013). Dietary intake and biological measurement of folate: a qualitative review of validation studies. Mol. Nutr. Food Res. 57, 562–581. 10.1002/mnfr.201200105
    1. Poppitt S. D., Swann D., Black A. E., Prentice A. M. (1998). Assessment of selective under-reporting of food intake by both obese and non-obese women in a metabolic facility. Int. J. Obes. Relat. Metab. Disord. 22, 303–311. 10.1038/sj.ijo.0800584
    1. Russell J. C., Flood V. M., Sadeghpour A., Gopinath B., Mitchell P. (2017). Total Diet Score as a valid method of measuring diet quality among older adults. Asia Pac. J. Clin. Nutr. 26, 212–219. 10.6133/apjcn.122015.08
    1. Saini R. K., Nile S. H., Keum Y.-S. (2016). Folates: chemistry, analysis, occurrence, biofortification and bioavailability. Food Res. Int. 89, 1–13. 10.1016/j.foodres.2016.07.013
    1. Santoro A., Pini E., Scurti M., Palmas G., Berendsen A., Brzozowska A., et al. (2014). Combating inflammaging through a Mediterranean whole diet approach: the NU-AGE project's conceptual framework and design. Mech. Ageing Dev. 136–137, 3–13. 10.1016/j.mad.2013.12.001
    1. Schoeller D. A., Bandini L. G., Dietz W. H. (1990). Inaccuracies in self-reported intake identified by comparison with the doubly labelled water method. Can. J. Physiol. Pharmacol. 68, 941–949. 10.1139/y90-143
    1. Shim J.-S., Oh K., Kim H. C. (2014). Epidemiology and Health Dietary assessment methods in epidemiologic studies. Epidemiol. Health 36:e2014009 10.4178/epih/e2014009
    1. Smith A. D., Refsum H. (2016). Homocysteine, B Vitamins, and cognitive impairment. Annu. Rev. Nutr. 36, 211–239. 10.1146/annurev-nutr-071715-050947
    1. Smith A. D., Refsum H., Bottiglieri T., Fenech M., Hooshmand B., Mccaddon A., et al. . (2018). Homocysteine and dementia: an international consensus statement. J. Alzheimers Dis. 62, 561–570. 10.3233/JAD-171042
    1. Sofi F., Macchi C., Abbate R., Gensini G. F., Casini A. (2013). Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 17, 2769–2782. 10.1017/S1368980013003169
    1. Talegawkar S. A., Bandinelli S., Bandeen-Roche K., Chen P., Milaneschi Y., Tanaka T., et al. (2012). A Higher Adherence to a Mediterranean-style diet is inversely associated with the development of frailty in community-dwelling elderly men and women 1,2. J. Nutr. 142, 2161–2166. 10.3945/jn.112.165498
    1. Tay J., Luscombe-Marsh N., Thompson C., Noakes M., Buckley J., Wittert G., et al. . (2015). Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am. J. Clin. Nutr. 102, 780–790. 10.3945/ajcn.115.112581
    1. Tiemeier H., van Tuijl H. R., Hofman A., Meijer J., Kiliaan A. J., Breteler M. M. B. (2002). Vitamin B12, folate, and homocysteine in depression: the rotterdam study. Am. J. Psychiatry 159, 2099–2101. 10.1176/appi.ajp.159.12.2099
    1. Trichopoulou A., Martínez-González M. A., Tong T. Y., Forouhi N. G., Khandelwal S., Prabhakaran D., et al. . (2014). Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 12:112. 10.1186/1741-7015-12-112
    1. Valls-Pedret C., Sala-Vila A., Serra-Mir M., Corella D., de La Torre R., Martìnez-Gonzàlez M. A., et al. . (2015). Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern. Med. 175, 1094–1103. 10.1001/jamainternmed.2015.1668
    1. Wibowo A. S., Singh M., Reeder K. M., Carter J. J., Kovach A. R., Meng W., et al. . (2013). Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc. Natl. Acad. Sci. U.S.A. 110, 15180–15188. 10.1073/pnas.1308827110
    1. Willett W. (2013). Nutritional Epidemiology, 3rd Edn. New York, NY: Oxford University Press.
    1. Wilson M. M., Thomas D. R., Rubenstein L. Z., Chibnall J. T., Anderson S., Baxi A., et al. . (2005). Appetite assessment: simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 82, 1074–1081. 10.1093/ajcn/82.5.1074
    1. Xiao S., Tang Y. S., Khan R. A., Zhang Y., Kusumanchi P., Stabler S. P., et al. . (2012). Influence of physiologic folate deficiency on human papillomavirus type 16 (HPV16)-harboring human keratinocytes in vitro and in vivo. J. Biol. Chem. 287, 12559–12577. 10.1074/jbc.M111.317040
    1. Yesavage J., Brink T., Rose T., Lum O., Huang V., Adey M., et al. . (1982). Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49. 10.1016/0022-3956(82)90033-4
    1. Yuan C., Spiegelman D., Rimm E. B., Rosner B. A., Stampfer M. J., Barnett J. B., et al. (2017). Practice of epidemiology relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records as compared with urinary recovery and plasma concentration biomarkers: findings for women. Am. J. Epidemiol. 187, 1051–1063. 10.1093/aje/kwx328
    1. Zakai N. A., Katz R., Jenny N. S., Psaty B. M., Reiner A. P., Schwartz S. M., et al. . (2007). Inflammation and hemostasis biomarkers and cardiovascular risk in the elderly: the cardiovascular health study. J. Thromb. Haemost. 5, 1128–1135. 10.1111/j.1538-7836.2007.02528.x

Source: PubMed

3
Se inscrever