Modeling HIV-HCV coinfection epidemiology in the direct-acting antiviral era: the road to elimination

Victor Virlogeux, Fabien Zoulim, Pascal Pugliese, Isabelle Poizot-Martin, Marc-Antoine Valantin, Lise Cuzin, Jacques Reynes, Eric Billaud, Thomas Huleux, Firouze Bani-Sadr, David Rey, Anne Frésard, Christine Jacomet, Claudine Duvivier, Antoine Cheret, Laurent Hustache-Mathieu, Bruno Hoen, André Cabié, Laurent Cotte, Dat’AIDS Study Group, Victor Virlogeux, Fabien Zoulim, Pascal Pugliese, Isabelle Poizot-Martin, Marc-Antoine Valantin, Lise Cuzin, Jacques Reynes, Eric Billaud, Thomas Huleux, Firouze Bani-Sadr, David Rey, Anne Frésard, Christine Jacomet, Claudine Duvivier, Antoine Cheret, Laurent Hustache-Mathieu, Bruno Hoen, André Cabié, Laurent Cotte, Dat’AIDS Study Group

Abstract

Background: HCV treatment uptake has drastically increased in HIV-HCV coinfected patients in France since direct-acting antiviral (DAA) treatment approval, resulting in HCV cure in 63% of all HIV-HCV patients by the end of 2015. We investigated the impact of scaling-up DAA on HCV prevalence in the whole HIV population and in various risk groups over the next 10 years in France using a transmission dynamic compartmental model.

Methods: The model was based on epidemiological data from the French Dat'AIDS cohort. Eight risk groups were considered, including high-risk (HR) and low-risk (LR) men who have sex with men (MSM) and male/female heterosexuals, intra-venous drug users, or patients from other risk groups. The model was calibrated on prevalence and incidence data observed in the cohort between 2012 and 2015.

Results: On January 1, 2016, 156,811 patients were registered as infected with HIV in France (24,900 undiagnosed patients) of whom 7938 (5.1%) had detectable HCV-RNA (722 undiagnosed patients). Assuming a treatment coverage (TC) rate of 30%/year (i.e., the observed rate in 2015), model projections showed that HCV prevalence among HIV patients is expected to drop to 0.81% in 2026. Sub-analyses showed a similar decrease of HIV-HCV prevalence in most risk groups, including LR MSM. Due to higher infection and reinfection rates, predicted prevalence in HR MSM remained stable from 6.96% in 2016 to 6.34% in 2026. Increasing annual TC rate in HR MSM to 50/70% would decrease HCV prevalence in this group to 2.35/1.25% in 2026. With a 30% TC rate, undiagnosed patients would account for 34% of HCV infections in 2026.

Conclusions: Our model suggests that DAA could nearly eliminate coinfection in France within 10 years for most risk groups, including LR MSM. Elimination in HR MSM will require increased TC.

Trial registration: ClinicalTrials.gov NCT02898987.

Keywords: Coinfection; Compartmental model; Direct-acting antiviral agent; HCV; HCV elimination; HIV; Mathematical modeling; Treatment uptake.

Conflict of interest statement

Ethics approval and consent to participate

All patients included in the Dat’AIDS cohort signed a written informed consent for the use of their personal data. The Dat’AIDS cohort is registered on ClinicalTrials.gov under reference number NCT02898987.

Consent for publication

Not applicable.

Competing interests

Mr. Victor Virlogeux reports consulting/speaker fees from Sanofi and AbbVie, outside the submitted work. Pr. Fabien Zoulim reports consulting/speaker fees from Gilead Science, Bristol Myers Squibb, and Roche. Dr. Poizot-Martin reports personal fees from Gilead Sciences and MSD, and non-financial support from BMS, outside the submitted work. Dr. Valantin reports personal fees from BMS, Gilead Sciences, Janssen, MSD and ViiV Healthcare, outside the submitted work. Dr. Cuzin reports personal fees from BMS and ViiV Health Care and non-financial support from Janssen and MSD, outside the submitted work. Dr. Reynes reports personal fees from Gilead Sciences, Janssen, Pfizer, MSD and ViiV Heathcare, outside the submitted work. Dr. Billaud reports personal fees from BMS, Gilead, Janssen and ViiV Healthcare, outside the submitted work. Dr. Huleux reports non-financial support from Janssen and ViiV Healthcare, outside the submitted work. Dr. Rey reports personal fees from BMS, Gilead Sciences, MSD, and ViiV Healthcare, outside the submitted work. Dr. Jacomet reports personal fees from Convergence Edition, Gilead Sciences, Janssen, MSD and ViiV Healthcare and non-financial support from Abbvie, Gilead Sciences, Janssen and MSD, outside the submitted work. Dr. Cabié reports non-financial support from BMS, Gilead Sciences and Janssen, outside the submitted work. Dr. Cotte reports grants from ViiV Healthcare and MSD, personal fees from Abbvie, BMS, Gilead Sciences, Janssen, MSD, ViiV Healthcare and non-financial support from Abbvie, BMS, Gilead Sciences, Janssen, MSD and ViiV Healthcare, outside the submitted work. Dr. Pugliese, Dr. Bani-Sadr, Dr. Fresard, Dr Duvivier, Dr. Cheret, Dr. Hustache-Mathieu, and Dr. Hoen have no conflicts of interest to disclose.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schematic diagram of HCV transmission compartmental model. Individuals are distributed in eight different risk groups (j): males and females for heterosexuals, for intravenous drug users, and for other groups, and low- and high-risk subgroups for men who have sex with men. New individuals enter the susceptible monoinfected categories (X) at a rate θ [20]. Susceptible individuals may be acutely infected (A) at an infection rate βj (estimated during the calibration process for each subgroup). Individuals acutely infected may progress to HCV chronic infection (C) at a rate (1–γ) or spontaneously clear their infection at a rate γ (S). Acute infection lasts an average 1/ψ. Chronically infected individuals start an HCV treatment at an annual rate τ. Treatment lasts an average 1/ω and results in SVR12 in a proportion α of all treated patients. Successfully treated patients or patients with spontaneous clearance may be reinfected with an external force of infection δj
Fig. 2
Fig. 2
Goodness-of-fit of the compartmental model to the prevalence data between 2012 and 2016 (a) and projected HCV prevalence over the next 10 years in the overall HIV population (b). To numerically estimate the goodness-of-fit of our model, we calculated a root mean square error (RMSE) of 459 individuals between 2012 and 2016. Vertical lines indicate the RMSE for each year between 2012 and 2016. Different annual treatment coverage rates were considered for the 10-year projection (panel B): 30%, 50%, 70%, and 90%. The number of HIV-HCV coinfected patients in the undiagnosed population is represented with a dashed horizontal line. This population was not considered eligible for direct-acting antiviral treatment
Fig. 3
Fig. 3
Projected prevalence (raw numbers) of HIV-HCV coinfection over the next 10 years within each risk group

References

    1. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol. 2014;61:S45–57. doi: 10.1016/j.jhep.2014.07.027.
    1. Cotte L, Pugliese P, Valantin M-A, Cuzin L, Billaud E, Duvivier C, et al. Hepatitis C treatment initiation in HIV-HCV coinfected patients. BMC Infect Dis. 2016;16:345. doi: 10.1186/s12879-016-1681-1.
    1. Rosenthal E, Salmon-Céron D, Lewden C, Bouteloup V, Pialoux G, Bonnet F, et al. Liver-related deaths in HIV-infected patients between 1995 and 2005 in the French GERMIVIC Joint Study Group Network (Mortavic 2005 study in collaboration with the Mortalité 2005 survey, ANRS EN19) HIV Med. 2009;10:282–9. doi: 10.1111/j.1468-1293.2008.00686.x.
    1. Kovari H, Ledergerber B, Cavassini M, Ambrosioni J, Bregenzer A, Stöckle M, et al. High hepatic and extrahepatic mortality and low treatment uptake in HCV-coinfected persons in the Swiss HIV cohort study between 2001 and 2013. J Hepatol. 2015;63:573–80. doi: 10.1016/j.jhep.2015.04.019.
    1. AASLD/IDSA HCV Guidance Panel Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology. 2015;62:932–54. doi: 10.1002/hep.27950.
    1. European Association for Study of Liver EASL recommendations on treatment of hepatitis C 2015. J Hepatol. 2015;63:199–236. doi: 10.1016/j.jhep.2015.03.025.
    1. Wyles DL, Sulkowski MS, Dieterich D. Management of hepatitis C/HIV coinfection in the era of highly effective hepatitis C virus direct-acting antiviral therapy: Table 1. Clin Infect Dis. 2016;63:S3–11. doi: 10.1093/cid/ciw219.
    1. Suwanthawornkul T, Anothaisintawee T, Sobhonslidsuk A, Thakkinstian A, Teerawattananon Y. Efficacy of second generation direct-acting antiviral agents for treatment naïve hepatitis C genotype 1: a systematic review and network meta-analysis. PLoS One. 2015;10:e0145953. doi: 10.1371/journal.pone.0145953.
    1. Ingiliz P, Martin TC, Rodger A, Stellbrink H-J, Mauss S, Boesecke C, et al. HCV reinfection incidence and spontaneous clearance rates in HIV-positive men who have sex with men in Western Europe. J Hepatol. 2017;66(2):282–7. doi: 10.1016/j.jhep.2016.09.004.
    1. Lambers FAE, Prins M, Thomas X, Molenkamp R, Kwa D, Brinkman K, et al. Alarming incidence of hepatitis C virus re-infection after treatment of sexually acquired acute hepatitis C virus infection in HIV-infected MSM. AIDS. 2011;25:F21–7. doi: 10.1097/QAD.0b013e32834bac44.
    1. Martin TCS, Martin NK, Hickman M, Vickerman P, Page EE, Everett R, et al. Hepatitis C virus reinfection incidence and treatment outcome among HIV-positive MSM. AIDS. 2013;27:2551–7. doi: 10.1097/QAD.0b013e32836381cc.
    1. Simmons B, Saleem J, Hill A, Riley RD, Cooke GS. Risk of late relapse or reinfection with hepatitis C virus after achieving a sustained virological response: a systematic review and meta-analysis. Clin Infect Dis. 2016;62:683–94. doi: 10.1093/cid/civ948.
    1. Martin NK, Thornton A, Hickman M, Sabin C, Nelson M, Cooke GS, et al. Can hepatitis C virus (HCV) direct-acting antiviral treatment as prevention reverse the HCV epidemic among men who have sex with men in the United Kingdom? Epidemiological and modeling insights. Clin Infect Dis. 2016;62:1072–80. doi: 10.1093/cid/ciw075.
    1. Salazar-Vizcaya L, Kouyos RD, Zahnd C, Wandeler G, Battegay M, Darling KEA, et al. Hepatitis C virus transmission among human immunodeficiency virus-infected men who have sex with men: Modeling the effect of behavioral and treatment interventions. Hepatology. 2016;64(6):1856–69. doi: 10.1002/hep.28769.
    1. Pugliese P, Cuzin L, Cabié A, Poizot-Martin I, Allavena C, Duvivier C, et al. A large French prospective cohort of HIV-infected patients: the Nadis Cohort. HIV Med. 2009;10:504–11. doi: 10.1111/j.1468-1293.2009.00719.x.
    1. Pradat P, Pugliese P, Poizot-Martin I, Valantin M-A, Cuzin L, Reynes J, et al. Direct-acting antiviral treatment against hepatitis C virus infection in HIV-infected patients - “En route for eradication”? J Infect. 2017;75(3):234–41. doi: 10.1016/j.jinf.2017.05.008.
    1. Hagan H, Jordan AE, Neurer J, Cleland CM. Incidence of sexually transmitted hepatitis C virus infection in HIV-positive men who have sex with men. AIDS. 2015;29:2335–45. doi: 10.1097/QAD.0000000000000834.
    1. Guidelines for the Management of Patients Infected by HIV in France - Morlat Report 2013. . Accessed 12 Dec 2016.
    1. Supervie V, Ndawinz JDA, Lodi S, Costagliola D. The undiagnosed HIV epidemic in France and its implications for HIV screening strategies. AIDS. 2014;28:1797–804. doi: 10.1097/QAD.0000000000000270.
    1. Bulletin Epidemiologique Hebdomadaire (BEH) - New HIV and AIDS Diagnoses, France, 2003-2013. INVS. 2015. . Accessed 9 Nov 2016.
    1. French Institute for Public Health Surveillance (InVS) - Découvertes de séropositivité VIH et de sida. Point épidémiologique du 23 mars 2017. 2017. . Accessed 16 June 2017.
    1. Wandeler G, Gsponer T, Bregenzer A, Günthard HF, Clerc O, Calmy A, et al. Hepatitis C virus infections in the Swiss HIV Cohort Study: a rapidly evolving epidemic. Clin Infect Dis. 2012;55:1408–16. doi: 10.1093/cid/cis694.
    1. van de Laar TJW, van der Bij AK, Prins M, Bruisten SM, Brinkman K, Ruys TA, et al. Increase in HCV incidence among men who have sex with men in Amsterdam most likely caused by sexual transmission. J Infect Dis. 2007;196:230–8. doi: 10.1086/518796.
    1. Nishijima T, Shimbo T, Komatsu H, Hamada Y, Gatanaga H, Oka S. Incidence and risk factors for incident Hepatitis C infection among men who have sex with men with HIV-1 infection in a large Urban HIV clinic in Tokyo. J Acquir Immune Defic Syndr. 2014;65:213–7. doi: 10.1097/QAI.0000000000000044.
    1. Terrault NA, Dodge JL, Murphy EL, Tavis JE, Kiss A, Levin TR, et al. Sexual transmission of hepatitis C virus among monogamous heterosexual couples: the HCV partners study. Hepatology. 2013;57:881–9. doi: 10.1002/hep.26164.
    1. Matthews GV, Pham ST, Hellard M, Grebely J, Zhang L, Oon A, et al. Patterns and characteristics of hepatitis C transmission clusters among HIV-positive and HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Infect Dis. 2011;52:803–11. doi: 10.1093/cid/ciq200.
    1. Larsen C, Chaix M-L, Le Strat Y, Velter A, Gervais A, Aupérin I, et al. Gaining greater insight into HCV emergence in HIV-infected men who have sex with men: the HEPAIG study. PLoS One. 2011;6:e29322. doi: 10.1371/journal.pone.0029322.
    1. Daskalopoulou M, Rodger A, Phillips AN, Sherr L, Speakman A, Collins S, et al. Recreational drug use, polydrug use, and sexual behaviour in HIV-diagnosed men who have sex with men in the UK: results from the cross-sectional ASTRA study. Lancet HIV. 2014;1:e22–31. doi: 10.1016/S2352-3018(14)70001-3.
    1. Schmidt AJ, Rockstroh JK, Vogel M, Ander Heiden M, Baillot A, Krznaric I, et al. Trouble with bleeding: risk factors for acute hepatitis C among HIV-positive gay men from Germany—a case-control study. PLoS One. 2011;6:e17781. doi: 10.1371/journal.pone.0017781.
    1. Williams IT, Bell BP, Kuhnert W, Alter MJ. Incidence and transmission patterns of acute hepatitis C in the United States, 1982-2006. Arch Intern Med. 2011;171:242–8. doi: 10.1001/archinternmed.2010.511.
    1. Nelson PK, Mathers BM, Cowie B, Hagan H, Des Jarlais D, Horyniak D, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet. 2011;378:571–83. doi: 10.1016/S0140-6736(11)61097-0.
    1. Hoornenborg E1, Achterbergh RCA, Schim Van Der Loeff MF, Davidovich U, Hogewoning A, Vries HJC, Schinkel J, Prins M, Laar TJWV, Amsterdam PrEP Project team in the HIV Transmission Elimination AMsterdam Initiative, MOSAIC study group. Men who have sex with men starting pre-exposure prophylaxis (PrEP) are at risk of HCV infection: evidence from the Amsterdam PrEP study. AIDS; 2017. doi:10.1097/QAD.0000000000001522.
    1. Boerekamps A1, Van den Berk GE2, Fanny LN3, Leyten EM4, Van Kasteren ME5, van Eeden A6, Posthouwer D7, Claassen MA8, Dofferhoff AS9, Verhagen DWM10, Bierman WF11, Lettinga KD12, Kroon FP13, Delsing CE14, Groeneveld PH15, Soetekouw R16, Peters EJ17, Hullegie SJ1, Popping S18, Van deVijver DAMC18, Boucher CA18, Arends JE19, Rijnders BJ1. Declining HCV incidence in Dutch HIV positive men who have sex with men after unrestricted access to HCV therapy. Clin Infect Dis; 2017. doi:10.1093/cid/cix1007.
    1. Molina J-M, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I, et al. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N Engl J Med. 2015;373:2237–46. doi: 10.1056/NEJMoa1506273.
    1. McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M, Gilson R, et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet. 2016;387:53–60. doi: 10.1016/S0140-6736(15)00056-2.
    1. Volk JE, Marcus JL, Phengrasamy T, Hare CB. Incident hepatitis C virus infections among users of HIV preexposure prophylaxis in a clinical practice setting. Clin Infect Dis. 2015;60:1728–9. doi: 10.1093/cid/civ129.
    1. Bulletin Epidemiologique Hebdomadaire (BEH) - World AIDS day December 2016. INVS. 2016. . Accessed 1 Jan 2017.
    1. Vogel M, van de Laar T, Kupfer B, Stellbrink H-J, Kümmerle T, Mauss S, et al. Phylogenetic analysis of acute hepatitis C virus genotype 4 infections among human immunodeficiency virus-positive men who have sex with men in Germany. Liver Int. 2010;30:1169–72. doi: 10.1111/j.1478-3231.2010.02305.x.
    1. van de Laar T, Pybus O, Bruisten S, Brown D, Nelson M, Bhagani S, et al. Evidence of a large, international network of HCV transmission in HIV-positive men who have sex with men. Gastroenterology. 2009;136:1609–17. doi: 10.1053/j.gastro.2009.02.006.

Source: PubMed

3
Se inscrever