An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology

Ali Nehme, Fouad A Zouein, Zeinab Deris Zayeri, Kazem Zibara, Ali Nehme, Fouad A Zouein, Zeinab Deris Zayeri, Kazem Zibara

Abstract

In its classical view, the renin angiotensin system (RAS) was defined as an endocrinesystem involved in blood pressure regulation and body electrolyte balance. However, the emergingconcept of tissue RAS, along with the discovery of new RAS components, increased thephysiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed invarious tissues where alterations in its expression were shown to be involved in multiple diseasesincluding atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In thischapter, we describe the new components of RAS, their tissue-specific expression, and theiralterations under pathological conditions, which will help achieve more tissue- and conditionspecifictreatments.

Keywords: expression; physiology; renin-angiotensin-aldosterone system; tissue.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
RAS components. Colors correspond to different arms of RAS: Orange, Angiotensin-I; pink, Angiotensin-(1–12); red, Angiotensin-II; green, Angiotensin-(1–7); Blue, Angiotensin III/VI; violet, Alamandine. Proteins are represented by the corresponding official gene symbols. The figure was adapted from Nehme et al. 2015 [7].
Figure 2
Figure 2
A specific combination of locally expressed RAS enzymes in a tissue results in the production of a specific combination of peptides that can bind to their corresponding receptors, leading to a locally balanced paracrine/autocrine effect that plays a role in tissue physiology and homeostasis. A change in local balance of RAS components will consequently lead to pathophysiological consequences.

References

    1. Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 2010;50:439–465. doi: 10.1146/annurev.pharmtox.010909.105610.
    1. Ribeiro-Oliveira A., Nogueira A.I., Pereira R.M., Boas W.W.V., dos Santos R.A.S., e Silva A.C.S. The renin–angiotensin system and diabetes: An update. Vasc. Health Risk Manag. 2008;4:787–803.
    1. Nehme A., Zibara K. Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma. Atherosclerosis. 2017;263:334–342. doi: 10.1016/j.atherosclerosis.2017.05.029.
    1. Nehme A., Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: How to achieve better end-organ protection? Hypertens. Res. 2017;40:903–909. doi: 10.1038/hr.2017.65.
    1. Borghi C., SIIA Task Force. Rossi F., SIF Task Force Role of the Renin-Angiotensin-Aldosterone System and Its Pharmacological Inhibitors in Cardiovascular Diseases: Complex and Critical Issues. High Blood Press Cardiovasc. Prev. 2015;22:429–444. doi: 10.1007/s40292-015-0120-5.
    1. Deschepper C.F. Angiotensinogen: Hormonal regulation and relative importance in the generation of angiotensin II. Kidney Int. 1994;46:1561–1563. doi: 10.1038/ki.1994.446.
    1. Nehme A., Cerutti C., Dhaouadi N., Gustin M.P., Courand P.-Y., Zibara K., Bricca G. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Sci Rep. 2015;5:10035. doi: 10.1038/srep10035.
    1. Atlas S.A. The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm. 2007;13:9–20. doi: 10.18553/jmcp.2007.13.s8-b.9.
    1. Dzau V.J., Herrmann H.C. Hormonal control of angiotensinogen production. Life Sci. 1982;30:577–584. doi: 10.1016/0024-3205(82)90272-7.
    1. Hsueh W.A. Potential effects of renin activation on the regulation of renin production. Am. J. Physiol. 1984;247:F205–F212. doi: 10.1152/ajprenal.1984.247.2.F205.
    1. Kohlstedt K., Busse R., Fleming I. Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertension. 2005;45:126–132. doi: 10.1161/01.HYP.0000150159.48992.11.
    1. Gasparo M., de Catt K.J., Inagami T., Wright J.W., Unger T. International Union of Pharmacology. XXIII. The Angiotensin II Receptors. Pharmacol. Rev. 2000;52:415–472.
    1. Kim S., Iwao H. Molecular and Cellular Mechanisms of Angiotensin II-Mediated Cardiovascular and Renal Diseases. Pharmacol. Rev. 2000;52:11–34.
    1. Jaffe I.Z., Mendelsohn M.E. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 2005;96:643–650. doi: 10.1161/01.RES.0000159937.05502.d1.
    1. Bhargava A., Wang J., Pearce D. Regulation of epithelial ion transport by aldosterone through changes in gene expression. Mol. Cell. Endocrinol. 2004;217:189–196. doi: 10.1016/j.mce.2003.10.020.
    1. Verhovez A., Williams T.A., Morello F., Monticone S., Brizzi M.F., Dentelli P., Fallo F., Fabris B., Amenta F., Gomez-Sanchez C., et al. Aldosterone does not modify gene expression in human endothelial cells. Horm. Metab. Res. 2012;44:234–238. doi: 10.1055/s-0031-1291272.
    1. Ferrario C.M., Ahmad S., Nagata S., Simington S.W., Varagic J., Kon N., Dell’italia L.J. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin. Sci. 2014;126:461–469. doi: 10.1042/CS20130400.
    1. Ganten D., Minnich J.L., Granger P., Hayduk K., Brecht H.M., Barbeau A., Boucher R., Genest J. Angiotensin-forming enzyme in brain tissue. Science. 1971;173:64–65. doi: 10.1126/science.173.3991.64.
    1. Husain A., Bumpus F.M., Smeby R.R., Brosnihan K.B., Khosla M.C., Speth R.C., Ferrario C.M. Evidence for the existence of a family of biologically active angiotensin I-like peptides in the dog central nervous system. Circ. Res. 1983;52:460–464. doi: 10.1161/01.RES.52.4.460.
    1. Nguyen G., Delarue F., Burcklé C., Bouzhir L., Giller T., Sraer J.-D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 2002;109:1417–1427. doi: 10.1172/JCI0214276.
    1. Paul M., Mehr A.P., Kreutz R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006;86:747–803. doi: 10.1152/physrev.00036.2005.
    1. Lau T., Carlsson P.-O., Leung P.S. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 2004;47:240–248. doi: 10.1007/s00125-003-1295-1.
    1. Dzau V.J. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation. 1988;77:I4–I13.
    1. Dzau V.J. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch. Intern. Med. 1993;153:937–942. doi: 10.1001/archinte.1993.00410080011002.
    1. Wu C., Lu H., Cassis L.A., Daugherty A. Molecular and Pathophysiological Features of Angiotensinogen: A Mini Review. N. Am. J. Med. Sci. (Boston) 2011;4:183–190. doi: 10.7156/v4i4p183.
    1. Batenburg W.W., Danser A.H.J. (Pro)renin and its receptors: Pathophysiological implications. Clin. Sci. 2012;123:121–133. doi: 10.1042/CS20120042.
    1. Kaneshiro Y., Ichihara A., Sakoda M., Takemitsu T., Nabi A.H.M.N., Uddin M.N., Nakagawa T., Nishiyama A., Suzuki F., Inagami T., et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J. Am. Soc. Nephrol. 2007;18:1789–1795. doi: 10.1681/ASN.2006091062.
    1. Lutterotti N., von Catanzaro D.F., Sealey J.E., Laragh J.H. Renin is not synthesized by cardiac and extrarenal vascular tissues. A review of experimental evidence. Circulation. 1994;89:458–470. doi: 10.1161/01.CIR.89.1.458.
    1. Boddi M., Poggesi L., Coppo M., Zarone N., Sacchi S., Tania C., Neri Serneri G.G. Human vascular renin-angiotensin system and its functional changes in relation to different sodium intakes. Hypertension. 1998;31:836–842. doi: 10.1161/01.HYP.31.3.836.
    1. Neri Serneri G.G., Boddi M., Coppo M., Chechi T., Zarone N., Moira M., Poggesi L., Margheri M., Simonetti I. Evidence for the existence of a functional cardiac renin-angiotensin system in humans. Circulation. 1996;94:1886–1893. doi: 10.1161/01.CIR.94.8.1886.
    1. Cassis L.A., Police S.B., Yiannikouris F., Thatcher S.E. Local adipose tissue renin-angiotensin system. Curr. Hypertens. Rep. 2008;10:93–98. doi: 10.1007/s11906-008-0019-9.
    1. Santos C.F., Akashi A.E., Dionísio T.J., Sipert C.R., Didier D.N., Greene A.S., Oliveira S.H.P., Pereira H.J.V., Becari C., Oliveira E.B., et al. Characterization of a local renin-angiotensin system in rat gingival tissue. J. Periodontol. 2009;80:130–139. doi: 10.1902/jop.2009.080264.
    1. Saris J.J., Derkx F.H., De Bruin R.J., Dekkers D.H., Lamers J.M., Saxena P.R., Schalekamp M.A., Jan Danser A.H. High-affinity prorenin binding to cardiac man-6-P/IGF-II receptors precedes proteolytic activation to renin. Am. J. Physiol. Heart Circ. Physiol. 2001;280:H1706–H1715. doi: 10.1152/ajpheart.2001.280.4.H1706.
    1. Morris B.J., Reid I.A. A “Renin-Like” Enzymatic Action of Cathepsin D and the Similarity in Subcellular Distributions of “Renin-Like” Activity and Cathepsin D in the Midbrain of Dogs. Endocrinology. 1978;103:1289–1296. doi: 10.1210/endo-103-4-1289.
    1. Rakoczy P.E., Sarks S.H., Daw N., Constable I.J. Distribution of cathepsin D in human eyes with or without age-related maculopathy. Exp. Eye Res. 1999;69:367–374. doi: 10.1006/exer.1999.0700.
    1. Naseem R.H., Hedegard W., Henry T.D., Lessard J., Sutter K., Katz S.A. Plasma cathepsin D isoforms and their active metabolites increase after myocardial infarction and contribute to plasma renin activity. Basic Res. Cardiol. 2005;100:139–146. doi: 10.1007/s00395-004-0499-3.
    1. Lavrentyev E.N., Estes A.M., Malik K.U. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells. Circ. Res. 2007;101:455–464. doi: 10.1161/CIRCRESAHA.107.151852.
    1. Belova L.A. Angiotensin II-generating enzymes. Biochemistry Mosc. 2000;65:1337–1345. doi: 10.1023/A:1002848402911.
    1. Hackenthal E., Hackenthal R., Hilgenfeldt U. Isorenin, pseudorenin, cathepsin D and renin. A comparative enzymatic study of angiotensin-forming enzymes. Biochim. Biophys. Acta. 1978;522:574–588. doi: 10.1016/0005-2744(78)90089-X.
    1. Figueiredo A.F., Takii Y., Tsuji H., Kato K., Inagami T. Rat kidney renin and cathepsin D: Purification and comparison of properties. Biochemistry. 1983;22:5476–5481. doi: 10.1021/bi00293a004.
    1. Nagata S., Kato J., Sasaki K., Minamino N., Eto T., Kitamura K. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem. Biophys. Res. Commun. 2006;350:1026–1031. doi: 10.1016/j.bbrc.2006.09.146.
    1. Komatsu Y., Kida N., Nozaki N., Kuwasako K., Nagata S., Kitamura K., Kato J. Effects of proangiotensin-12 infused continuously over 14 days in conscious rats. Eur. J. Pharmacol. 2012;683:186–189. doi: 10.1016/j.ejphar.2012.02.037.
    1. Ferrario C.M., Von Cannon J., Jiao Y., Ahmad S., Bader M., Dell’Italia L.J., Groban L., Varagic J. Cardiac angiotensin-(1–12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H995–H1002. doi: 10.1152/ajpheart.00833.2015.
    1. Isa K., García-Espinosa M.A., Arnold A.C., Pirro N.T., Tommasi E.N., Ganten D., Chappell M.C., Ferrario C.M., Diz D.I. Chronic immunoneutralization of brain angiotensin-(1–12) lowers blood pressure in transgenic (mRen2)27 hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R111–R115. doi: 10.1152/ajpregu.90588.2008.
    1. Arnold A.C., Isa K., Shaltout H.A., Nautiyal M., Ferrario C.M., Chappell M.C., Diz D.I. Angiotensin-(1–12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am. J. Physiol. Heart Circ. Physiol. 2010;299:H763–H771. doi: 10.1152/ajpheart.00345.2010.
    1. Chitravanshi V.C., Sapru H.N. Cardiovascular responses elicited by a new endogenous angiotensin in the nucleus tractus solitarius of the rat. Am. J. Physiol. Heart Circ. Physiol. 2011;300:H230–H240. doi: 10.1152/ajpheart.00861.2010.
    1. Chitravanshi V.C., Proddutur A., Sapru H.N. Cardiovascular actions of angiotensin-(1–12) in the hypothalamic paraventricular nucleus of the rat are mediated via angiotensin II. Exp. Physiol. 2012;97:1001–1017. doi: 10.1113/expphysiol.2011.062471.
    1. Jessup J.A., Trask A.J., Chappell M.C., Nagata S., Kato J., Kitamura K., Ferrario C.M. Localization of the novel angiotensin peptide, angiotensin-(1–12), in heart and kidney of hypertensive and normotensive rats. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H2614–H2618. doi: 10.1152/ajpheart.91521.2007.
    1. Nagata S., Kato J., Kuwasako K., Kitamura K. Plasma and tissue levels of proangiotensin-12 and components of the renin-angiotensin system (RAS) following low- or high-salt feeding in rats. Peptides. 2010;31:889–892. doi: 10.1016/j.peptides.2010.02.008.
    1. Westwood B.M., Chappell M.C. Divergent pathways for the angiotensin-(1–12) metabolism in the rat circulation and kidney. Peptides. 2012;35:190–195. doi: 10.1016/j.peptides.2012.03.025.
    1. Ahmad S., Varagic J., Westwood B.M., Chappell M.C., Ferrario C.M. Uptake and metabolism of the novel peptide angiotensin-(1–12) by neonatal cardiac myocytes. PLoS ONE. 2011;6:e15759. doi: 10.1371/journal.pone.0015759.
    1. Ahmad S., Simmons T., Varagic J., Moniwa N., Chappell M.C., Ferrario C.M. Chymase-dependent generation of angiotensin II from angiotensin-(1–12) in human atrial tissue. PLoS ONE. 2011;6:e28501. doi: 10.1371/journal.pone.0028501.
    1. Prosser H.C., Richards A.M., Forster M.E., Pemberton C.J. Regional vascular response to ProAngiotensin-12 (PA12) through the rat arterial system. Peptides. 2010;31:1540–1545. doi: 10.1016/j.peptides.2010.05.009.
    1. Tonnesen M.G., Klempner M.S., Austen K.F., Wintroub B.U. Identification of a human neutrophil angiotension II-generating protease as cathepsin G. J. Clin. Invest. 1982;69:25–30. doi: 10.1172/JCI110437.
    1. Urata H., Kinoshita A., Misono K.S., Bumpus F.M., Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J. Biol. Chem. 1990;265:22348–22357.
    1. Park S., Bivona B.J., Kobori H., Seth D.M., Chappell M.C., Lazartigues E., Harrison-Bernard L.M. Major role for ACE-independent intrarenal ANG II formation in type II diabetes. Am. J. Physiol. Renal Physiol. 2010;298:F37–F48. doi: 10.1152/ajprenal.00519.2009.
    1. Nouet S., Nahmias C. Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol. Metab. 2000;11:1–6. doi: 10.1016/S1043-2760(99)00205-2.
    1. Fei D.T., Coghlan J.P., Fernley R.T., Scoggins B.A., Tregear G.W. Peripheral production of angiotensin II and III in sheep. Circ. Res. 1980;46:I135–I137.
    1. Van Kats J.P., van Meegen J.R., Verdouw P.D., Duncker D.J., Schalekamp M.A., Danser A.H. Subcellular localization of angiotensin II in kidney and adrenal. J. Hypertens. 2001;19:583–589. doi: 10.1097/00004872-200103001-00010.
    1. Van Kats J.P., Danser A.H., van Meegen J.R., Sassen L.M., Verdouw P.D., Schalekamp M.A. Angiotensin production by the heart: A quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation. 1998;98:73–81. doi: 10.1161/01.CIR.98.1.73.
    1. Danser A.H., van Kats J.P., Verdouw P.D., Schalekamp M.A. Evidence for the existence of a functional cardiac renin-angiotensin system in humans. Circulation. 1997;96:3795–3796.
    1. Sealey J.E. Evidence for cardiovascular effects of prorenin. J. Hum. Hypertens. 1995;9:381–384.
    1. Esther C.R., Marino E.M., Howard T.E., Machaud A., Corvol P., Capecchi M.R., Bernstein K.E. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 1997;99:2375–2385. doi: 10.1172/JCI119419.
    1. Arakawa K., Ikeda M., Fukuyama J., Sakai T. A pressor formation by trypsin from renin-denatured human plasma protein. J. Clin. Endocrinol. Metab. 1976;42:599–602. doi: 10.1210/jcem-42-3-599.
    1. Arakawa K., Maruta H. Ability of kallikrein to generate angiotensin II-like pressor substance and a proposed ‘kinin-tensin enzyme system’. Nature. 1980;288:705–706. doi: 10.1038/288705a0.
    1. Miura S., Ideishi M., Sakai T., Motoyama M., Kinoshita A., Sasaguri M., Tanaka H., Shindo M., Arakawa K. Angiotensin II formation by an alternative pathway during exercise in humans. J. Hypertens. 1994;12:1177–1181. doi: 10.1097/00004872-199410000-00008.
    1. Arakawa K., Urata H. Hypothesis regarding the pathophysiological role of alternative pathways of angiotensin II formation in atherosclerosis. Hypertension. 2000;36:638–641. doi: 10.1161/01.HYP.36.4.638.
    1. Li Y., Li X.-H., Yuan H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc. Diagn. Ther. 2012;2:56–62.
    1. Carey R.M., Wang Z.Q., Siragy H.M. Update: Role of the angiotensin type-2 (AT(2)) receptor in blood pressure regulation. Curr. Hypertens. Rep. 2000;2:198–201. doi: 10.1007/s11906-000-0082-3.
    1. Jin X.H., Wang Z.Q., Siragy H.M., Guerrant R.L., Carey R.M. Regulation of jejunal sodium and water absorption by angiotensin subtype receptors. Am. J. Physiol. 1998;275:R515–R523. doi: 10.1152/ajpregu.1998.275.2.R515.
    1. Strauss M.H., Hall A.S. Angiotensin Receptor Blockers May Increase Risk of Myocardial Infarction. Circulation. 2006;114:838–854. doi: 10.1161/CIRCULATIONAHA.105.594986.
    1. Reudelhuber T.L. The continuing saga of the AT2 receptor: A case of the good, the bad, and the innocuous. Hypertension. 2005;46:1261–1262. doi: 10.1161/01.HYP.0000193498.07087.83.
    1. Pahlavani M., Kalupahana N.S., Ramalingam L., Moustaid-Moussa N. Regulation and Functions of the Renin-Angiotensin System in White and Brown Adipose Tissue. Compr Physiol. 2017;7:1137–1150.
    1. Tonnaer J.A., Engels G.M., Wiegant V.M., Burbach J.P., De Jong W., De Wied D. Proteolytic conversion of angiotensins in rat brain tissue. Eur. J. Biochem. 1983;131:415–421. doi: 10.1111/j.1432-1033.1983.tb07279.x.
    1. Santos R.A., Brosnihan K.B., Chappell M.C., Pesquero J., Chernicky C.L., Greene L.J., Ferrario C.M. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11:I153–I157. doi: 10.1161/01.HYP.11.2_Pt_2.I153.
    1. Tom B., Dendorfer A., Danser A.H.J. Bradykinin, angiotensin-(1–7), and ACE inhibitors: How do they interact? Int. J. Biochem. Cell Biol. 2003;35:792–801. doi: 10.1016/S1357-2725(02)00273-X.
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000;87:E1–E9. doi: 10.1161/01.RES.87.5.e1.
    1. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A Human Homolog of Angiotensin-converting Enzyme CLONING AND FUNCTIONAL EXPRESSION AS A CAPTOPRIL-INSENSITIVE CARBOXYPEPTIDASE. J. Biol. Chem. 2000;275:33238–33243. doi: 10.1074/jbc.M002615200.
    1. Rice G.I., Thomas D.A., Grant P.J., Turner A.J., Hooper N.M. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem. J. 2004;383:45–51. doi: 10.1042/BJ20040634.
    1. Jackman H.L., Massad M.G., Sekosan M., Tan F., Brovkovych V., Marcic B.M., Erdös E.G. Angiotensin 1–9 and 1–7 release in human heart: Role of cathepsin A. Hypertension. 2002;39:976–981. doi: 10.1161/01.HYP.0000017283.67962.02.
    1. Pereira M.G.A.G., Souza L.L., Becari C., Duarte D.A., Camacho F.R.B., Oliveira J.A.C., Gomes M.D., Oliveira E.B., Salgado M.C.O., Garcia-Cairasco N., et al. Angiotensin II-independent angiotensin-(1–7) formation in rat hippocampus: Involvement of thimet oligopeptidase. Hypertension. 2013;62:879–885. doi: 10.1161/HYPERTENSIONAHA.113.01613.
    1. Douglas G.C., O’Bryan M.K., Hedger M.P., Lee D.K.L., Yarski M.A., Smith A.I., Lew R.A. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology. 2004;145:4703–4711. doi: 10.1210/en.2004-0443.
    1. Santos R.A.S., Simoes e Silva A.C., Maric C., Silva D.M.R., Machado R.P., de Buhr I., Heringer-Walther S., Pinheiro S.V.B., Lopes M.T., Bader M., et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA. 2003;100:8258–8263. doi: 10.1073/pnas.1432869100.
    1. Simões e Silva A.C., Silveira K.D., Ferreira A.J., Teixeira M.M. ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013;169:477–492. doi: 10.1111/bph.12159.
    1. Kostenis E., Milligan G., Christopoulos A., Sanchez-Ferrer C.F., Heringer-Walther S., Sexton P.M., Gembardt F., Kellett E., Martini L., Vanderheyden P., et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation. 2005;111:1806–1813. doi: 10.1161/01.CIR.0000160867.23556.7D.
    1. Villela D., Leonhardt J., Patel N., Joseph J., Kirsch S., Hallberg A., Unger T., Bader M., Santos R.A., Sumners C., et al. Angiotensin type 2 receptor (AT2R) and receptor Mas: A complex liaison. Clin. Sci. 2015;128:227–234. doi: 10.1042/CS20130515.
    1. Karnik S.S., Khuraijam D., Tirupula K., Unal H. Significance of Ang(1–7) coupling with MAS1 and other GPCRs to the Renin-Angiotensin System: IUPHAR Review “X”. Br. J. Pharmacol. 2017 doi: 10.1111/bph.13742.
    1. Chappell M.C. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1–7)-MAS receptor axis: More than regulation of blood pressure? Hypertension. 2007;50:596–599. doi: 10.1161/HYPERTENSIONAHA.106.076216.
    1. Oudit G.Y., Kassiri Z., Patel M.P., Chappell M., Butany J., Backx P.H., Tsushima R.G., Scholey J.W., Khokha R., Penninger J.M. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc. Res. 2007;75:29–39. doi: 10.1016/j.cardiores.2007.04.007.
    1. Liu R., Qi H., Wang J., Wang Y., Cui L., Wen Y., Yin C. Angiotensin-converting enzyme (ACE and ACE2) imbalance correlates with the severity of cerulein-induced acute pancreatitis in mice. Exp. Physiol. 2014;99:651–663. doi: 10.1113/expphysiol.2013.074815.
    1. Wösten-van Asperen R.M., Lutter R., Specht P.A., Moll G.N., van Woensel J.B., van der Loos C.M., van Goor H., Kamilic J., Florquin S., Bos A.P. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J. Pathol. 2011;225:618–627. doi: 10.1002/path.2987.
    1. Simões e Silva A.C., Miranda A.S., Rocha N.P., Teixeira A.L. Renin angiotensin system in liver diseases: Friend or foe? World J. Gastroenterol. 2017;23:3396–3406. doi: 10.3748/wjg.v23.i19.3396.
    1. Moreira de Macêdo S., Guimarães T.A., Feltenberger J.D., Sousa Santos S.H. The role of renin-angiotensin system modulation on treatment and prevention of liver diseases. Peptides. 2014;62:189–196. doi: 10.1016/j.peptides.2014.10.005.
    1. Shim K.Y., Eom Y.W., Kim M.Y., Kang S.H., Baik S.K. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension. Korean J. Intern. Med. 2018;33:453–461. doi: 10.3904/kjim.2017.317.
    1. Mak K.Y., Chin R., Cunningham S.C., Habib M.R., Torresi J., Sharland A.F., Alexander I.E., Angus P.W., Herath C.B. ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice. Mol. Ther. 2015;23:1434–1443. doi: 10.1038/mt.2015.92.
    1. Osterreicher C.H., Taura K., De Minicis S., Seki E., Penz-Osterreicher M., Kodama Y., Kluwe J., Schuster M., Oudit G.Y., Penninger J.M., et al. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology. 2009;50:929–938. doi: 10.1002/hep.23104.
    1. Saldanha da Silva A.A., Rodrigues Prestes T.R., Lauar A.O., Finotti B.B., Simoes E., Silva A.C. Renin Angiotensin System and Cytokines in Chronic Kidney Disease: Clinical and Experimental Evidence. Protein Pept. Lett. 2017;24:799–808. doi: 10.2174/0929866524666170818160809.
    1. Caruso-Neves C., Lara L.S., Rangel L.B., Grossi A.L., Lopes A.G. Angiotensin-(1–7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim. Biophys. Acta. 2000;1467:189–197. doi: 10.1016/S0005-2736(00)00219-4.
    1. Lara L.S., Bica R.B.S., Sena S.L.F., Correa J.S., Marques-Fernandes M.F., Lopes A.G., Caruso-Neves C. Angiotensin-(1–7) reverts the stimulatory effect of angiotensin II on the proximal tubule Na(+)-ATPase activity via a A779-sensitive receptor. Regul. Pept. 2002;103:17–22. doi: 10.1016/S0167-0115(01)00322-6.
    1. Esteban V., Heringer-Walther S., Sterner-Kock A., de Bruin R., van den Engel S., Wang Y., Mezzano S., Egido J., Schultheiss H.-P., Ruiz-Ortega M., et al. Angiotensin-(1–7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS ONE. 2009;4:e5406. doi: 10.1371/journal.pone.0005406.
    1. Jiang T., Gao L., Guo J., Lu J., Wang Y., Zhang Y. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br. J. Pharmacol. 2012;167:1520–1532. doi: 10.1111/j.1476-5381.2012.02105.x.
    1. Chiu A.T., Ryan J.W., Stewart J.M., Dorer F.E. Formation of angiotensin III by angiotensin-converting enzyme. Biochem. J. 1976;155:189–192. doi: 10.1042/bj1550189.
    1. Cesari M., Rossi G.P., Pessina A.C. Biological properties of the angiotensin peptides other than angiotensin II: Implications for hypertension and cardiovascular diseases. J. Hypertens. 2002;20:793–799. doi: 10.1097/00004872-200205000-00002.
    1. Padia S.H., Kemp B.A., Howell N.L., Siragy H.M., Fournie-Zaluski M.-C., Roques B.P., Carey R.M. Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension. 2007;49:625–630. doi: 10.1161/01.HYP.0000254833.85106.4d.
    1. Kotlo K., Hughes D.E., Herrera V.L.M., Ruiz-Opazo N., Costa R.H., Robey R.B., Danziger R.S. Functional polymorphism of the Anpep gene increases promoter activity in the Dahl salt-resistant rat. Hypertension. 2007;49:467–472. doi: 10.1161/01.HYP.0000256303.40359.38.
    1. Carrera M.P., Ramírez-Expósito M.J., Valenzuela M.T., Dueñas B., García M.J., Mayas M.D., Martínez-Martos J.M. Renin-angiotensin system-regulating aminopeptidase activities are modified in the pineal gland of rats with breast cancer induced by N-methyl-nitrosourea. Cancer Invest. 2006;24:149–153. doi: 10.1080/07357900500524389.
    1. Chai S.Y., Fernando R., Peck G., Ye S.-Y., Mendelsohn F.A.O., Jenkins T.A., Albiston A.L. The angiotensin IV/AT4 receptor. Cell. Mol. Life Sci. 2004;61:2728–2737. doi: 10.1007/s00018-004-4246-1.
    1. Appenrodt E., Brattström A. Effects of central angiotensin II and angiotensin III on baroreflex regulation. Neuropeptides. 1994;26:175–180. doi: 10.1016/0143-4179(94)90127-9.
    1. Handa R.K. Biphasic actions of angiotensin IV on renal blood flow in the rat. Regul. Pept. 2006;136:23–29. doi: 10.1016/j.regpep.2006.04.008.
    1. Albiston A.L., McDowall S.G., Matsacos D., Sim P., Clune E., Mustafa T., Lee J., Mendelsohn F.A., Simpson R.J., Connolly L.M., et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem. 2001;276:48623–48626. doi: 10.1074/jbc.C100512200.
    1. Lochard N., Thibault G., Silversides D.W., Touyz R.M., Reudelhuber T.L. Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Circ. Res. 2004;94:1451–1457. doi: 10.1161/01.RES.0000130654.56599.40.
    1. Li X.C., Campbell D.J., Ohishi M., Yuan S., Zhuo J.L. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am. J. Physiol. Renal Physiol. 2006;290:F1024–F1033. doi: 10.1152/ajprenal.00221.2005.
    1. Jankowski V., Vanholder R., van der Giet M., Tölle M., Karadogan S., Gobom J., Furkert J., Oksche A., Krause E., Tran T.N.A., et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol. 2007;27:297–302. doi: 10.1161/01.ATV.0000253889.09765.5f.
    1. Yang R., Smolders I., Vanderheyden P., Demaegdt H., Van Eeckhaut A., Vauquelin G., Lukaszuk A., Tourwé D., Chai S.Y., Albiston A.L., et al. Pressor and renal hemodynamic effects of the novel angiotensin A peptide are angiotensin II type 1A receptor dependent. Hypertension. 2011;57:956–964. doi: 10.1161/HYPERTENSIONAHA.110.161836.
    1. Coutinho D.C.O., Foureaux G., Rodrigues K.D.L., Salles R.L.A., Moraes P.L., Murça T.M., De Maria M.L.A., Gomes E.R.M., Santos R.A.S., Guatimosim S., et al. Cardiovascular effects of angiotensin A: A novel peptide of the renin-angiotensin system. J. Renin. Angiotensin Aldosterone Syst. 2014;15:480–486. doi: 10.1177/1470320312474856.
    1. Lautner R.Q., Villela D.C., Fraga-Silva R.A., Silva N., Verano-Braga T., Costa-Fraga F., Jankowski J., Jankowski V., Sousa F., Alzamora A., et al. Discovery and characterization of alamandine: A novel component of the renin-angiotensin system. Circ. Res. 2013;112:1104–1111. doi: 10.1161/CIRCRESAHA.113.301077.
    1. Tetzner A., Gebolys K., Meinert C., Klein S., Uhlich A., Trebicka J., Villacañas Ó., Walther T. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1–7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase, A. Hypertension. 2016;68:185–194. doi: 10.1161/HYPERTENSIONAHA.116.07572.
    1. Habiyakare B., Alsaadon H., Mathai M.L., Hayes A., Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: Differential effects of alamandine and Ang(1–7) Int. J. Exp. Pathol. 2014;95:290–295. doi: 10.1111/iep.12087.
    1. Mogielnicki A., Kramkowski K., Hermanowicz J.M., Leszczynska A., Przyborowski K., Buczko W. Angiotensin-(1–9) enhances stasis-induced venous thrombosis in the rat because of the impairment of fibrinolysis. J Renin. Angiotensin Aldosterone Syst. 2014;15:13–21. doi: 10.1177/1470320313498631.
    1. Karwowska-Polecka W., Kułakowska A., Wiśniewski K., Braszko J.J. Losartan influences behavioural effects of angiotensin II(3–7) in rats. Pharmacol. Res. 1997;36:275–283. doi: 10.1006/phrs.1997.0239.
    1. Handa R.K. Metabolism alters the selectivity of angiotensin-(1–7) receptor ligands for angiotensin receptors. J. Am. Soc. Nephrol. 2000;11:1377–1386.
    1. Nehme A., Marcelo P., Nasser R., Kobeissy F., Bricca G., Zibara K. The kinetics of angiotensin-I metabolism in human carotid atheroma: An emerging role for angiotensin (1–7) Vascul. Pharmacol. 2016 doi: 10.1016/j.vph.2016.08.001.
    1. Nehme A., Cerutti C., Zibara K. Transcriptomic analysis reveals novel transcription factors associated with renin-angiotensin-aldosterone system in human atheroma. Hypertension. 2016;68:1375–1384. doi: 10.1161/HYPERTENSIONAHA.116.08070.

Source: PubMed

3
Se inscrever