Renin-Angiotensin-Aldosterone System, Glucose Metabolism and Incident Type 2 Diabetes Mellitus: MESA

Joshua J Joseph, Justin B Echouffo Tcheugui, Valery S Effoe, Willa A Hsueh, Matthew A Allison, Sherita H Golden, Joshua J Joseph, Justin B Echouffo Tcheugui, Valery S Effoe, Willa A Hsueh, Matthew A Allison, Sherita H Golden

Abstract

Background Mechanistic studies suggest that aldosterone impairs glucose metabolism. We investigated the cross-sectional associations of aldosterone and plasma renin activity with fasting plasma glucose, insulin resistance ( IR ), β-cell function, and longitudinal association with incident diabetes mellitus among adults in MESA (the multiethnic study of atherosclerosis) prospective cohort study. Methods and Results Homeostatic model assessment of IR ( HOMA 2- IR ) and HOMA 2-β were used to estimate IR and β-cell function, respectively. Incident diabetes mellitus was defined as fasting plasma glucose ≥126 mg/dL or anti-diabetic medication use at follow-up. Linear regression was used to examine cross-sectional associations of aldosterone with fasting plasma glucose, HOMA 2- IR and HOMA 2-β; Cox regression was used to estimate hazard ratios ( HR ) for incident diabetes mellitus with multivariable adjustment. There were 116 cases of incident diabetes mellitus over 10.5 years among 1570 adults (44% non-Hispanic white, 13% Chinese American, 19% Black, 24% Hispanic American, mean age 64±10 years, 51% female). A 100% increase in log-aldosterone was associated with a 2.6 mg/dL higher fasting plasma glucose, 15% higher HOMA 2- IR and 6% higher HOMA 2-β ( P<0.01). A 1- SD increase in log-aldosterone was associated with a 44% higher risk of incident diabetes mellitus ( P<0.01) with the greatest increase of 142% ( P<0.01) observed in Chinese Americans ( P for interaction=0.09 versus other ethnicities). Similar cross-sectional findings for log-plasma renin activity existed, but log-plasma renin activity was not associated with incident diabetes mellitus after full adjustment. Conclusions Aldosterone is associated with glucose homeostasis and diabetes mellitus risk with graded associations among Chinese Americans and blacks, suggesting that pleiotropic effects of aldosterone may represent a modifiable mechanism in diabetes mellitus pathogenesis with potential racial/ethnic variation.

Keywords: aldosterone; race and ethnicity; renin angiotensin system; type 2 diabetes mellitus.

Figures

Figure 1
Figure 1
Race/ethnicity‐specific associations of aldosterone with incident diabetes mellitus. The cubic spline regressions estimate the hazard ratio of incident diabetes mellitus, according to concentrations of aldosterone (picograms per milliliter, pg/mL) examined as a continuous variable up to the 99th percentile with 3 knots placed at the 25th, 50th, and 75th percentiles. Splines are adjusted for age, sex, study site, education, current alcohol use, physical activity, estimated glomerular filtration rate, systolic blood pressure, and waist circumference. Below each spline is the histogram of the distribution of aldosterone concentration among participants with detectable aldosterone (n=1548).

References

    1. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, Albright AL, Gregg EW. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA. 2014;312:1218.
    1. Luther JM, Brown NJ. The renin‐angiotensin‐aldosterone system and glucose homeostasis. Trends Pharmacol Sci. 2011;32:734–739.
    1. Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 2013;15:59–70.
    1. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK. Mineralocorticoid receptor blockade reverses obesity‐related changes in expression of adiponectin, peroxisome proliferator‐activated receptor‐, and proinflammatory adipokines. Circulation. 2008;117:2253–2261.
    1. Reincke M, Meisinger C, Holle R, Quinkler M, Hahner S, Beuschlein F, Bidlingmaier M, Seissler J, Endres S. Is primary aldosteronism associated with diabetes mellitus? Results of the German Conn's Registry. Horm Metab Res. 2010;42:435–439.
    1. Joseph JJ, Echouffo‐Tcheugui JB, Kalyani RR, Yeh H‐C, Bertoni AG, Effoe VS, Casanova R, Sims M, Correa A, Wu W‐C, Wand GS, Golden SH. Aldosterone, renin, and diabetes mellitus in African Americans: the Jackson Heart Study. J Clin Endocrinol Metab. 2016;101:1770–1778.
    1. Nishimoto K, Tomlins SA, Kuick R, Cani AK, Giordano TJ, Hovelson DH, Liu C‐J, Sanjanwala AR, Edwards MA, Gomez‐Sanchez CE, Nanba K, Rainey WE. Aldosterone‐stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci USA. 2015;112:E4591–E4599.
    1. Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE. Age‐related autonomous aldosteronism clinical perspective. Circulation. 2017;136:347–355.
    1. Brown JM, Robinson‐Cohen C, Luque‐Fernandez MA, Allison MA, Baudrand R, Ix JH, Kestenbaum B, de Boer IH, Vaidya A. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann Intern Med. 2017;167:630–641.
    1. Bild DE. Multi‐Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002;156:871–881.
    1. Joseph JJ, Echouffo‐Tcheugui JB, Golden SH, Chen H, Jenny NS, Carnethon MR, Jacobs D Jr, Burke GL, Vaidya D, Ouyang P, Bertoni AG. Physical activity, sedentary behaviors and the incidence of type 2 diabetes mellitus: the Multi‐Ethnic Study of Atherosclerosis (MESA). BMJ Open Diabetes Res Care. 2016;4:e000185.
    1. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–1495.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF III, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD‐EPI (Chronic Kidney Disease Epidemiology Collaboration) . A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612.
    1. American Diabetes Association . Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33:S62–S69.
    1. Goodfriend TL, Egan BM, Kelley DE. Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins Leukot Essent Fatty Acids. 1999;60:401–405.
    1. Joseph JJ, Golden SH. Type 2 diabetes and cardiovascular disease: what next? Curr Opin Endocrinol Diabetes Obes. 2014;21:109–120.
    1. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6:51–59.
    1. Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids. 2014;91:54–60.
    1. Morizane S, Mitani F, Ozawa K, Ito K, Matsuhashi T, Katsumata Y, Ito H, Yan X, Shinmura K, Nishiyama A, Honma S, Suzuki T, Funder JW, Fukuda K, Sano M. Biphasic time course of the changes in aldosterone biosynthesis under high‐salt conditions in Dahl salt‐sensitive rats. Arterioscler Thromb Vasc Biol. 2012;32:1194–1203.
    1. Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity in black Americans. Hypertension. 1996;28:854–858.
    1. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988;297:319–328.
    1. Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, DiMeglio LA, Jung J, Pratt JH. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension. 2014;63:1212–1218.
    1. Rahimi Z, Moradi M, Nasri H. A systematic review of the role of renin angiotensin aldosterone system genes in diabetes mellitus, diabetic retinopathy and diabetic neuropathy. J Res Med Sci. 2014;19:1090.
    1. Russo P, Siani A, Venezia A, Iacone R, Russo O, Barba G, D'Elia L, Cappuccio FP, Strazzullo P. Interaction between the C(‐344)T polymorphism of CYP11B2 and age in the regulation of blood pressure and plasma aldosterone levels: cross‐sectional and longitudinal findings of the Olivetti Prospective Heart Study. J Hypertens. 2002;20:1785–1792.
    1. Ranade K, Wu KD, Risch N, Olivier M, Pei D, Hsiao CF, Chuang LM, Ho LT, Jorgenson E, Pesich R, Chen YD, Dzau V, Lin A, Olshen RA, Curb D, Cox DR, Botstein D. Genetic variation in aldosterone synthase predicts plasma glucose levels. Proc Natl Acad Sci USA. 2001;98:13219–13224.
    1. Kumagai E, Adachi H, Jacobs DR, Hirai Y, Enomoto M, Fukami A, Otsuka M, Kumagae S‐I, Nanjo Y, Yoshikawa K, Esaki E, Yokoi K, Ogata K, Kasahara A, Tsukagawa E, Ohbu‐Murayama K, Imaizumi T. Plasma aldosterone levels and development of insulin resistance: prospective study in a general population. Hypertension. 2011;58:1043–1048.
    1. Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis A, Cavarape A, Sechi LA. Insulin sensitivity in patients with primary aldosteronism: a follow‐up study. J Clin Endocrinol Metab. 2006;91:3457–3463.
    1. Fischer E, Adolf C, Pallauf A, Then C, Bidlingmaier M, Beuschlein F, Seissler J , Reincke M. Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J Clin Endocrinol Metab. 2013;98:2513–2520.
    1. Al‐Mallah M, Khawaja O, Sinno M, Alzohaili O, Samra ABA. Do angiotensin converting enzyme inhibitors or angiotensin receptor blockers prevent diabetes mellitus? A meta‐analysis. Cardiol J. 2010;17:448–456.
    1. NAVIGATOR Study Group , McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztambide S, Giles T, Horton E, Ilkova H, Jenssen T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutten GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamás G, Tognoni G, Tuomilehto J, Villamil AS, Vozár J, Califf RM. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362:1477–1490.
    1. Norris K, Bourgoigne J, Gassman J, Hebert L, Middleton J, Phillips RA, Randall O, Rostand S, Sherer S, Toto RD, Wright JT, Wang X, Greene T, Appel LJ, Lewis J. Cardiovascular outcomes in the African American Study of kidney disease and hypertension (AASK) Trial. Am J Kidney Dis. 2006;48:739–751.
    1. Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Abe M, Fukushima Y, Kikuchi M, Fujita T. High‐salt diet enhances insulin signaling and induces insulin resistance in Dahl salt‐sensitive rats. Hypertension. 2002;40:83–89.
    1. The Diabetes Prevention Program . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.
    1. American Diabetes Association . Standards of medical care in diabetes—2017. Diabetes Care. 2017;40 (suppl_1):S1–S142.

Source: PubMed

3
Se inscrever