Critical inspiratory pressure - a new methodology for evaluating and training the inspiratory musculature for recreational cyclists: study protocol for a randomized controlled trial

Patricia Rehder-Santos, Vinicius Minatel, Juliana Cristina Milan-Mattos, Étore De Favari Signini, Raphael Martins de Abreu, Carla Cristina Dato, Aparecida Maria Catai, Patricia Rehder-Santos, Vinicius Minatel, Juliana Cristina Milan-Mattos, Étore De Favari Signini, Raphael Martins de Abreu, Carla Cristina Dato, Aparecida Maria Catai

Abstract

Background: Inspiratory muscle training (IMT) has brought great benefits in terms of improving physical performance in healthy individuals. However, there is no consensus regarding the best training load, as in most cases the maximal inspiratory pressure (MIP) is used, mainly the intensity of 60% of MIP. Therefore, prescribing an IMT protocol that takes into account inspiratory muscle strength and endurance may bring additional benefits to the commonly used protocols, since respiratory muscles differ from other muscles because of their greater muscular resistance. Thus, IMT using critical inspiratory pressure (PThC) can be an alternative, as the calculation of PThC considers these characteristics. Therefore, the aim of this study is to propose a new IMT protocol to determine the best training load for recreational cyclists.

Methods: Thirty recreational cyclists (between 20 and 40 years old) will be randomized into three groups: sham (SG), PThC (CPG) and 60% of MIP, according to age and aerobic functional capacity. All participants will undergo the following evaluations: pulmonary function test (PFT), respiratory muscle strength test (RMS), cardiopulmonary exercise test (CPET), incremental inspiratory muscle endurance test (iIME) (maximal sustained respiratory pressure for 1 min (PThMAX)) and constant load test (CLT) (95%, 100% and 105% of PThMÁX) using a linear load inspiratory resistor (PowerBreathe K5). The PThC will be calculated from the inspiratory muscle endurance time (TLIM) and inspiratory loads of each CLT. The IMT will last 11 weeks (3 times/week and 55 min/session). The session will consist of 5-min warm-up (50% of the training load) and three sets of 15-min breaths (100% of the training load), with a 1-min interval between them. RMS, iIME, CLT and CPET will be performed beforehand, at week 5 and 9 (to adjust the training load) and after training. PFT will be performed before and after training. The data will be analyzed using specific statistical tests (parametric or non-parametric) according to the data distribution and their respective variances. A p value <0.05 will be considered statistically significant.

Discussions: It is expected that the results of this study will enable the training performed with PThC to be used by health professionals as a new tool to evaluate and prescribe IMT.

Trial registration: ClinicalTrials.gov, NCT02984189 . Registered on 6 December 2016.

Keywords: Critical power; Physical exercise; Physical performance; Physiotherapy; Respiratory muscle.

Conflict of interest statement

Ethics approval and consent to participate

All ethical aspects were considered. The present study will be conducted in accordance with the Helsinki Declaration. This study was approved by the Human Research Ethics Committee at the Federal University of São Carlos (UFSCar) (number 1.558.731). All subjects provide signed informed consent and are registered in the Clinical Trials registry (NCT02984189).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Template of recommended interventional trials (SPIRIT) schedule. 60G, 60% of maximal inspiratory pressure group; CLT, constant load test; CPET, cardiopulmonary exercise test; iIME, incremental inspiratory muscle endurance test; CPG, critical inspiratory pressure group; PFT, pulmonary function test; RMS, respiratory muscle strength test; SG, sham group; sham, 6 cmH2O
Fig. 2
Fig. 2
Description of steps to calculate critical inspiratory pressure. a Incremental inspiratory muscle endurance test. b Constant load test. c Linear regression to determination of critical inspiratory pressure (PThC). MIP, maximal inspiratory pressure; min, minute; REC, recovery
Fig. 3
Fig. 3
Schematization of inspiratory muscle training protocol. MIP, maximal inspiratory pressure; min, minute; WU, warm-up

References

    1. Cahalin LP, Arena R, Guazzi M, Myers J, Cipriano G, Chiappa G, et al. Inspiratory muscle training in heart disease and heart failure: a review of the literature with a focus on method of training and outcomes. Expert Rev Cardiovasc Ther. 2013;11(2):161–177. doi: 10.1586/erc.12.191.
    1. Cahalin LP, Arena RA. Breathing exercises and inspiratory muscle training in heart failure. Heart Fail Clin. 2015;11(1):149–172. doi: 10.1016/j.hfc.2014.09.002.
    1. HajGhanbari B, Yamabayashi C, Buna TR, Coelho JD, Freedman KD, Morton TA, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res. 2013;27(6):1643–1663. doi: 10.1519/JSC.0b013e318269f73f.
    1. Edwards AM, Cooke CB. Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended. Eur J Appl Physiol. 2004;93(1–2):139–144. doi: 10.1007/s00421-004-1188-0.
    1. Gething AD, Williams M, Davies B. Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br J Sports Med. 2004;38(6):730–736. doi: 10.1136/bjsm.2003.007518.
    1. Sheel AW. Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med. 2002;32(9):567–581. doi: 10.2165/00007256-200232090-00003.
    1. Fairbarn M, Coutts K, Pardy R, McKenzie D. Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal Exercise performance. Int J Sports Med. 1991;12(01):66–70. doi: 10.1055/s-2007-1024658.
    1. Holm P, Sattler A, Fregosi RF. Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 2004;4:9. doi: 10.1186/1472-6793-4-9.
    1. Jakovljevic DG, McConnell AK. Influence of different breathing frequencies on the severity of inspiratory muscle fatigue induced by high-intensity front crawl swimming. J Strength Cond Res. 2009;23(4):1169–1174. doi: 10.1519/JSC.0b013e318199d707.
    1. Johnson MA, Sharpe GR, Brown PI. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol. 2007;101(6):761–770. doi: 10.1007/s00421-007-0551-3.
    1. Kilding AE, Brown S, McConnell AK. Inspiratory muscle training improves 100 and 200 m swimming performance. Eur J Appl Physiol. 2010;108(3):505–511. doi: 10.1007/s00421-009-1228-x.
    1. Mickleborough TD, Nichols T, Lindley MR, Chatham K, Ionescu AA. Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners: inspiratory muscle training and running. Scand J Med Sci Sports. 2009;20(3):458–468. doi: 10.1111/j.1600-0838.2009.00951.x.
    1. Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA. Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol. 2001;127(2–3):185–199. doi: 10.1016/S0034-5687(01)00250-X.
    1. Wells GD, Plyley M, Thomas S, Goodman L, Duffin J. Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur J Appl Physiol. 2005;94(5–6):527–540. doi: 10.1007/s00421-005-1375-7.
    1. Wylegala JA, Pendergast DR, Gosselin LE, Warkander DE, Lundgren CEG. Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol. 2007;99(4):393–404. doi: 10.1007/s00421-006-0359-6.
    1. Sturdy G, Hillman D, Green D, Jenkins S, Cecins N, Eastwood P. Feasibility of high-intensity, interval-based respiratory muscle training in COPD. Chest. 2003;123(1):142–150. doi: 10.1378/chest.123.1.142.
    1. Hill K, Jenkins SC, Philippe DL, Shepherd KL, Hillman DR, Eastwood PR. Comparison of incremental and constant load tests of inspiratory muscle endurance in COPD. Eur Respir J. 2007;30(3):479–486. doi: 10.1183/09031936.00095406.
    1. Powers SK, Criswell D, Lieu F-K, Dodd S, Silverman H. Diaphragmatic fiber type specific adaptation to endurance exercise. Respir Physiol. 1992;89(2):195–207. doi: 10.1016/0034-5687(92)90050-7.
    1. Janssens L, Brumagne S, McConnell AK, Raymaekers J, Goossens N, Gayan-Ramirez G, et al. The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review. Respir Med. 2013;107(3):331–346. doi: 10.1016/j.rmed.2012.11.019.
    1. Minatel V. Análise das respostas ventilatórias, metabólicas e do controle autonômico cardiovascular durante testes de resistência muscular inspiratória e de determinação da pressão inspiratória e de determinação da pressão inspiratória crítica. São Carlos: Universidade Federal de São Carlos; 2017.
    1. Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(3):329–338. doi: 10.1080/00140136508930810.
    1. Hill DW. The critical power concept: a review. Sports Med. 1993;16(4):237–254. doi: 10.2165/00007256-199316040-00003.
    1. Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of V˙O2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):1876–1890. doi: 10.1249/MSS.0b013e3181d9cf7f.
    1. Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–350. doi: 10.1080/00140138108924856.
    1. Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–555. doi: 10.1249/mss.0b013e31802dd3e6.
    1. Dall’Ago P, Chiappa GRS, Guths H, Stein R, Ribeiro JP. Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial. J Am Coll Cardiol. 2006;47(4):757–763. doi: 10.1016/j.jacc.2005.09.052.
    1. Eastwood PR, Hillman DR, Morton AR, Finucane KE. The effects of learning on the ventilatory responses to inspiratory threshold loading. Am J Respir Crit Care Med. 1998;158(4):1190–1196. doi: 10.1164/ajrccm.158.4.9803108.
    1. Neves Laura Maria Tomazi, Karsten Marlus, Neves Victor Ribeiro, Beltrame Thomas, Borghi-Silva Audrey, Catai Aparecida Maria. Relationship between inspiratory muscle capacity and peak exercise tolerance in patients post-myocardial infarction. Heart & Lung. 2012;41(2):137–145. doi: 10.1016/j.hrtlng.2011.07.010.
    1. Neves LF, Reis MH, Plentz RDM, Matte DL, Coronel CC, Sbruzzi G. Expiratory and expiratory plus inspiratory muscle training improves respiratory muscle strength in subjects with COPD: systematic review. Respir Care. 2014;59(9):1381–1388. doi: 10.4187/respcare.02793.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Rev Panam Salud Publica Pan Am J Public Health. 2015;38(6):506–514.
    1. AHA. Exercise testing and training of apparently healthy individuals: a handbook for physicians: Universidade de Michigan. Dallas: American Heart Association; 1972. p. 40.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in Apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Hautmann H, Hefele S, Schotten K, Huber RM. Maximal inspiratory mouth pressures (PIMAX) in healthy subjects—what is the lower limit of normal? Respir Med. 2000;94(7):689–693. doi: 10.1053/rmed.2000.0802.
    1. Perseguini NM, de Medeiros Takahashi AC, Milan JC, dos Santos PR, Neves VFC, Borghi-Silva A, et al. Effect of hormone replacement therapy on cardiac autonomic modulation. Clin Auton Res. 2014;24(2):63–70. doi: 10.1007/s10286-014-0226-1.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Souza RB. Pressões respiratórias estáticas Máximas. J Pneumol. 2002;28(3):155–64.
    1. Romer LM, McConnell AK. Inter-test reliability for non-invasive measures of respiratory muscle function in healthy humans. Eur J Appl Physiol. 2004;91(2–3):167–176. doi: 10.1007/s00421-003-0984-2.
    1. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719–727. doi: 10.1590/S0100-879X1999000600007.
    1. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225. doi: 10.1161/CIR.0b013e3181e52e69.
    1. Higa MN, Silva E, Neves VFC, Catai AM, Gallo L, Jr, Silva de Sá MF. Comparison of anaerobic threshold determined by visual and mathematical methods in healthy women. Braz J Med Biol Res. 2007;40(4):501–508. doi: 10.1590/S0100-879X2007000400008.
    1. Dempsey JA, Sheel AW, St Croix CM, Morgan BJ. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol. 2002;130(1):3–20. doi: 10.1016/S0034-5687(01)00327-9.
    1. Wasserman K, editor. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. p. 572.
    1. Castello-Simões V, Minatel V, Karsten M, Simões RP, Perseguini NM, Milan JC, et al. Circulatory and ventilatory power: characterization in patients with coronary artery disease. Arq Bras Cardiol. 2015.
    1. American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624.
    1. Pereira Carlos Alberto de Castro, Sato Taeko, Rodrigues Sílvia Carla. Novos valores de referência para espirometria forçada em brasileiros adultos de raça branca. Jornal Brasileiro de Pneumologia. 2007;33(4):397–406. doi: 10.1590/S1806-37132007000400008.
    1. Neves LMT, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Respiratory muscle endurance is limited by lower ventilatory efficiency in post-myocardial infarction patients. Braz J Phys Ther. 2014;18(1):1–8. doi: 10.1590/S1413-35552012005000134.
    1. Shadgan B, Guenette JA, Sheel AW, Reid WD. Sternocleidomastoid muscle deoxygenation in response to incremental inspiratory threshold loading measured by near infrared spectroscopy. Respir Physiol Neurobiol. 2011;178(2):202–209. doi: 10.1016/j.resp.2011.06.001.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Taylor & Francis Inc.; 1988.
    1. de Abreu Raphael Martins, Rehder-Santos Patrícia, Minatel Vinicius, dos Santos Gabriela Lopes, Catai Aparecida Maria. Effects of inspiratory muscle training on cardiovascular autonomic control: A systematic review. Autonomic Neuroscience. 2017;208:29–35. doi: 10.1016/j.autneu.2017.09.002.
    1. Schulz KF, Altman DG, Moher D, for the CONSORT Group CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(mar23 1):c332. doi: 10.1136/bmj.c332.
    1. Burd NA, Holwerda AM, Selby KC, West DWD, Staples AW, Cain NE, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men: resistance exercise volume and myofibrillar protein synthesis. J Physiol. 2010;588(16):3119–3130. doi: 10.1113/jphysiol.2010.192856.

Source: PubMed

3
Se inscrever