Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury

Michael A Petrie, Manish Suneja, Elizabeth Faidley, Richard K Shields, Michael A Petrie, Manish Suneja, Elizabeth Faidley, Richard K Shields

Abstract

Spinal cord injury (SCI) is associated with muscle atrophy, transformation of muscle fibers to a fast fatigable phenotype, metabolic inflexibility (diabetes), and neurogenic osteoporosis. Electrical stimulation of paralyzed muscle may mitigate muscle metabolic abnormalities after SCI, but there is a risk for a fracture to the osteoporotic skeletal system. The goal of this study was to determine if low force stimulation (3 Hz) causes fatigue of chronically paralyzed muscle consistent with selected muscle gene expression profiles. We tested 29 subjects, nine with a SCI and 20 without and SCI, during low force fatigue protocol. Three SCI and three non-SCI subjects were muscle biopsied for gene and protein expression analysis. The fatigue index (FI) was 0.21 ± 0.27 and 0.91 ± 0.01 for the SCI and non-SCI groups, respectively, supporting that the low force protocol physiologically fatigued the chronically paralyzed muscle. The post fatigue potentiation index (PI) for the SCI group was increased to 1.60 ± 0.06 (P <0.001), while the non-SCI group was 1.26 ± 0.02 supporting that calcium handling was compromised with the low force stimulation. The mRNA expression from genes that regulate atrophy and fast properties (MSTN, ANKRD1, MYH8, and MYCBP2) was up regulated, while genes that regulate oxidative and slow muscle properties (MYL3, SDHB, PDK2, and RyR1) were repressed in the chronic SCI muscle. MSTN, ANKRD1, MYH8, MYCBP2 gene expression was also repressed 3 h after the low force stimulation protocol. Taken together, these findings support that a low force single twitch activation protocol induces paralyzed muscle fatigue and subsequent gene regulation. These findings suggest that training with a low force protocol may elicit skeletal muscle adaptations in people with SCI.

Keywords: Electrical stimulation; genotype; paralysis; phenotype; potentiation.

Figures

Figure 1.
Figure 1.
Torque measurement apparatus, with adjustable load cell and stabilization cuff (bottom). Representative twitches at the start, the peak, and the end of the first bout of the 3 Hz stimulation protocol in paralyzed muscle (top). The initial and peak twitches show little difference in amplitude, but the later twitches show a decrease in amplitude.
Figure 2.
Figure 2.
(A)The group means and standard errors for the fatigue index (FI), as a function of the maximum twitch, for bout 1 and bout 2. The twitches after the maximum twitch within each bout were grouped in bins of 10% of the remaining twitches. (B) The mean fatigue index (FI) for each group for bout 1 and bout 2. *Significant difference between SCI and non‐SCI for bout 1; **Significant difference between SCI and non‐SCI for bout 2; ***Significant difference between bout 1 and 2 for the SCI group.
Figure 3.
Figure 3.
(A) The group means and standard errors for the potentiation index (PI), as a function of the maximum twitch, for bout 1 and bout 2. The twitches before the maximum twitch within each bout were grouped in bins of 10% of the preceding twitches. (B) The potentiation index (PI) for each group for bout 1 and 2. *Significant difference between SCI and non‐SCI for bout 1; **Significant difference between SCI and non‐SCI for bout 2; ***Significant difference between bout 1 and 2 for the SCI.
Figure 4.
Figure 4.
(A) The relative gene expression intensity for MSTN, ANKRD1, MYH8, MYCBP2 between a chronic SCI and non‐SCI muscle phenotype. (B) A bidirectional standard error plot of the fatigue index versus the relative gene expression intensity (MSTN, ANKRD1, MYH8, and MYCBP2) for the chronic SCI phenotype (closed circle) and non‐SCI phenotype (open circle). The relative expression intensity for all genes were significant at the P <0.05 level (see text for details).
Figure 5.
Figure 5.
(A) The relative gene expression intensity for MSTN, ANKRD1, MYH8, MYCBP2 between a chronic SCI and non‐SCI muscle phenotype. (B) A bidirectional standard error plot of the fatigue index versus the relative gene expression intensity (MYL3, SDHB, PDK2, and RYR1) for the chronic SCI phenotype (closed circle) and non‐SCI phenotype (open circle). The relative expression intensity for all genes was significant at the P <0.05 level (see text for details).
Figure 6.
Figure 6.
The relative protein expression level of SDH, an oxidative enzyme in the citric acid cycle which is partially translated by SDHB, was significantly depressed in chronic SCI compared to non‐SCI at the P <0.05 level(A). The relative protein expression level of SERCA2, a calcium transport protein associated with slow‐twitch muscle and the associated RyR1, was significantly depressed in chronic SCI compared to non‐SCI at the P <0.10 level (B).
Figure 7.
Figure 7.
The gene expression changes from a single subject (subject 6) 3 h after a low force stimulation protocol. The expression of MSTN, ANKRD1, MYH8, MYCBP2, MYL3, SDHB, PDK2, and RYR1 is shown as the fold change difference between the stimulated muscle relative to the non stimulated muscle.

References

    1. Adams C. M., Suneja M., Dudley‐Javoroski S., Shields R. K. 2011. Altered mRNA expression after long‐term soleus electrical stimulation training in humans with paralysis. Mus. Ner.; 43:65-75
    1. Alapat D. V., Chaudhry T., Ardakany‐Taghavi R., Kohtz D. S. 2009. Fiber‐types of sarcomeric proteins expressed in cultured myogenic cells are modulated by the dose of myogenin activity. Cell. Signal.; 21:128-135
    1. Bjornholm M., Zierath J. R. 2005. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem. Soc. Trans.; 33:354-357
    1. Burke R. E., Levine D. N., Tsairis P., Zajac F. E. 1973. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol.; 234:723-748
    1. Callister R. J., Sesodia S., Enoka R. M., Nemeth P. M., Reinking R. M., Stuart D. G. 2004. Fatigue of rat hindlimb motor units: biochemical– physiological associations. Mus. Ner.; 30:714-726
    1. Carty A., McCormack K., Coughlan G. F., Crowe L., Caulfield B. 2012. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch. Phys. Med. Rehabil.; 93:790-795
    1. Carty A., McCormack K., Coughlan G. F., Crowe L., Caulfield B. 2013. Alterations in body composition and spasticity following subtetanic neuromuscular electrical stimulation training in spinal cord injury. J. Rehabil. Res. Dev.; 50:193-202
    1. Chang Y. J., Shields R. K. 2002. Within‐train neuromuscular propagation varies with torque in paralyzed human muscle. Mus. Ner.; 26:673-680
    1. Chau J. Y., Grunseit A., Midthjell K., Holmen J., Holmen T. L., Bauman A. E. 2014. Cross‐sectional associations of total sitting and leisure screen time with cardiometabolic risk in adults. Results from the HUNT Study, Norway. J. Sci. Med. Sport/Sports Med. Aust.; 17:78-84
    1. Duchateau J., Montigny L., Hainaut K. 1987. Electro‐mechanical failures and lactate production during fatigue. Europ. J. Appl. Physiol.; 56:287-291
    1. Dudley‐Javoroski S., Shields R. K. 2006. Assessment of physical function and secondary complications after complete spinal cord injury. Disabil. Rehabil.; 28:103-110
    1. Dudley‐Javoroski S., Shields R. K. 2008. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J. Rehabil. Res. Dev.; 45:283-296
    1. Dudley‐Javoroski S., Shields R. K. 2013. Active‐resisted stance modulates regional bone mineral density in humans with spinal cord injury. J. Spinal Cord Med.; 36:191-199
    1. Dudley‐Javoroski S., Littmann A. E., Iguchi M., Shields R. K. 2008. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing. J. Appl. Physiol.; 104:1574-1582
    1. Dudley‐Javoroski S., Saha P. K., Liang G., Li C., Gao Z., Shields R. K. 2012. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury. Osteoporos. Int.; 23:2335-2346
    1. Duvivier B. M., Schaper N. C., Bremers M. A., van Crombrugge G., Menheere P. P., Kars M. 2013. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS ONE; 8:e55542.
    1. Eisenberg B. R., Gilai A. 1979. Structural changes in single muscle fibers after stimulation at a low frequency. J. Gen. Physiol.; 74:1-16
    1. Eser P., Frotzler A., Zehnder Y., Wick L., Knecht H., Denoth J. 2004. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone; 34:869-880
    1. Fattal C., Mariano‐Goulart D., Thomas E., Rouays‐Mabit H., Verollet C., Maimoun L. 2011. Osteoporosis in persons with spinal cord injury: the need for a targeted therapeutic education. Arch. Phys. Med. Rehabil.; 92:59-67
    1. Fauler M., Jurkat‐Rott K., Lehmann‐Horn F. 2012. Membrane excitability and excitation–contraction uncoupling in muscle fatigue. Neuromuscul. Disord.; 22Supplement 3:S162-S167
    1. Grimby G., Broberg C., Krotkiewska I., Krotkiewski M. 1976. Muscle fiber composition in patients with traumatic cord lesion. Scand. J. Rehabil. Med.; 8:37-42
    1. Hartkopp A., Murphy R. J., Mohr T., Kjaer M., Biering‐Sorensen F. 1998. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch. Phys. Med. Rehabil.; 79:1133-1136
    1. Healy G. N., Dunstan D. W., Salmon J., Cerin E., Shaw J. E., Zimmet P. Z. 2008. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care; 31:661-666
    1. Heiden E., Yang J., Peek‐Asa C., Shields R. K., Ramirez M., Campo S. 2013. Subsequent injury hospitalizations and associated costs between individuals with pre‐exisitng quadriplegia versus paraplegia. Am. J. Public Health
    1. Henneman E., Somjen G., Carpenter D. O. 1965. Functional significance of cell size in spinal motoneurons. J. Neurophysiol.; 28:560-580
    1. Iguchi M., Baldwin K., Boeyink C., Engle C., Kehoe M., Ganju A. 2008. Low frequency fatigue in human quadriceps is fatigue dependent and not task dependent. J. Electromyogr. Kinesiol.; 18:308-316
    1. Jacobs R. A., Fluck D., Bonne T. C., Burgi S., Christensen P. M., Toigo M. 2013. Improvements in exercise performance with high‐intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J. Appl. Physiol.; 115:785-793
    1. Jeong J. Y., Jeoung N. H., Park K. G., Lee I. K. 2012. Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes Metab. J.; 36:328-335
    1. Jones S. W., Hill R. J., Krasney P. A., O'Conner B., Peirce N., Greenhaff P. L. 2004. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J.; 18:1025-1027
    1. Kita K., Oya H., Gennis R. B., Ackrell B. A. C., Kasahara M. 1990. Human complex II(succinate‐ubiquinone oxidoreductase): cDNA cloning of iron sulfur(Ip) subunit of liver mitochondria. Biochem. Biophys. Res. Comm.; 166:101-108
    1. Krause J. S., Carter R. E., Pickelsimer E. E., Wilson D. 2008. A prospective study of health and risk of mortality after spinal cord injury. Arch. Phys. Med. Rehabil.; 89:1482-1491
    1. Lavela S. L., Weaver F. M., Goldstein B., Chen K., Miskevics S., Rajan S. 2006. Diabetes mellitus in individuals with spinal cord injury or disorder. J. Spinal Cord Med.; 29:387-395
    1. LaVela S. L., Evans C. T., Prohaska T. R., Miskevics S., Ganesh S. P., Weaver F. M. 2012. Males aging with a spinal cord injury: prevalence of cardiovascular and metabolic conditions. Arch. Phys. Med. Rehabil.; 93:90-95
    1. MacIntosh B. R., Holash R. J., Renaud J.‐M. 2012. Skeletal muscle fatigue – regulation of excitation–contraction coupling to avoid metabolic catastrophe. J. Cell Sci.; 125:2105-2114
    1. Marsden C., Meadows J., Merton P. 1983. “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. Advances Neurol.; 39:169
    1. Martin T. P., Bodine‐Fowler S., Roy R. R., Eldred E., Edgerton V. R. 1988. Metabolic and fiber size properties of cat tibialis anterior motor units. Am. J. Physiol.; 255:C43-C50
    1. Metzger J. M., Fitts R. H. 1987. Fatigue from high‐ and low‐frequency muscle stimulation: contractile and biochemical alterations. J. Appl. Physiol.; 62:2075-2082
    1. Meyer G. A., Schenk S., Lieber R. L. 2013. Role of the cytoskeleton in muscle transcriptional responses to altered use. Physiol. Genomics; 45:321-331
    1. Moore R. L., Stull J. T. 1984. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am. J. Physiol.; 247:C462-C471
    1. Mootha V. K., Lindgren C. M., Eriksson K. F., Subramanian A., Sihag S., Lehar J. 2003. PGC‐1alpha‐responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.; 34:267-273
    1. Nakamura K., Nakada C., Takeuchi K., Osaki M., Shomori K., Kato S. 2002. Altered expression of cardiac ankyrin repeat protein and its homologue, ankyrin repeat protein with PEST and proline‐rich region, in atrophic muscles in amyotrophic lateral sclerosis. Pathobiology; 70:197-203
    1. Oh I.‐U., Inazawa J., Kim Y.‐O., Song B. J., Huh T.‐L. 1996. Assignment of the human mitochondrial NADP+‐specific isocitrate dehydrogenase (IDH2) gene to 15q26.1 byin situ hybridization. Genomics; 38:104-106
    1. Palsgaard J., Brons C., Friedrichsen M., Dominguez H., Jensen M., Storgaard H. 2009. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways. PLoS ONE; 4:e6575.
    1. Pedersen B. K. 2013. Muscle as a secretory organ. Compr. Physiol.; 3:1337-1362
    1. Qin H., Morris B. J., Hoh J. F. Y. 1994. Isolation and structure of cat superfast myosin light chain‐2 cDNA and evidence for the identity of its human homologue. Biochem. Biophys. Res. Commun.; 200:1277-1282
    1. Rassier D. E. 2000. The effects of length on fatigue and twitch potentiation in human skeletal muscle. Clin. Physiol.; 20:474-482
    1. Rassier D. E., Macintosh B. R. 2000. Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res.; 33:499-508
    1. Rivera‐Brown A. M., Frontera W. R. 2012. Principles of exercise physiology: responses to acute exercise and long‐term adaptations to training. PMR; 4:797-804
    1. Ryan T. E., Erickson M. L., Young H.‐J., McCully K. K. 2013. Case report: Endurance electrical stimulation training improves skeletal muscle oxidative capacity in chronic spinal cord injury. Arch. Phys. Med. Rehabil.; 94:2559-2561
    1. Schoenfeld B. 2013. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med.; 43:179-194
    1. Shields R. K. 1995. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J. Neurophysiol.; 73:2195-2206
    1. Shields R. K., Chang Y. J. 1997. The effects of fatigue on the torque‐frequency curve of the human paralysed soleus muscle. J. Electromyogr. Kinesiol.; 7:3-13
    1. Shields R. K., Dudley‐Javoroski S. 2006. Musculoskeletal plasticity after acute spinal cord injury: effects of long‐term neuromuscular electrical stimulation training. J. Neurophysiol.; 95:2380-2390
    1. Shields R. K., Dudley‐Javoroski S. 2007. Musculoskeletal adaptations in chronic spinal cord injury: effects of long‐term soleus electrical stimulation training. Neurorehabil. Neu. Rep.; 21:169-179
    1. Shields R. K., Law L. F., Reiling B., Sass K., Wilwert J. 1997. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. J. Appl. Physiol.; 82:1499-1507
    1. Shields R. K., Chang Y. J., Ross M. 1998. Neuromuscular propagation after fatiguing contractions of the paralyzed soleus muscle in humans. Musc. Ner.; 21:776-787
    1. Shields R. K., Dudley‐Javoroski S., Littmann A. E. 2006a. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long‐term electrical stimulation training. J. Appl. Physiol.; 101:556-565
    1. Stein R. B., Gordon T., Jefferson J., Sharfenberger A., Yang J. F., de Zepetnek J. T. 1992. Optimal stimulation of paralyzed muscle after human spinal cord injury. J. Appl. Physiol.; 72:1393-1400
    1. Stephenson E. J., Hawley J. A. 2013. Mitochondrial function in metabolic health: a genetic and environmental tug of war. Biochim. Biophys. Acta10.1016/j.bbagen.2013.12.004
    1. Stevenson D. A., Swoboda K. J., Sanders R. K., Bamshad M. 2006. A new distal arthrogryposis syndrome characterized by plantar flexion contractures. Am. J. Med. Gen. Part A; 140A:2797-2801
    1. Tubman L. A., MacIntosh B. R., Maki W. A. 1996. Myosin light chain phosphorylation and posttetanic potentiation in fatigued skeletal muscle. Pflugers Arch.; 431:882-887
    1. Tubman L. A., Rassier D. E., MacIntosh B. R. 1997. Attenuation of myosin light chain phosphorylation and posttetanic potentiation in atrophied skeletal muscle. Pflugers Arch.; 434:848-851
    1. Vandenboom R., Houston M. E. 1996. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle. Can. J. Physiol. Pharmacol.; 74:1315-1321
    1. Westerblad H., Duty S., Allen D. G. 1993. Intracellular calcium concentration during low‐frequency fatigue in isolated single fibers of mouse skeletal muscle. J. Appl. Physiol.; 75:382-388
    1. Zierath J. R., Hawley J. A. 2004. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol.; 2:e348.

Source: PubMed

3
Se inscrever