The impact of sarcopenic obesity on knee and hip osteoarthritis: a scoping review

Kristine Godziuk, Carla M Prado, Linda J Woodhouse, Mary Forhan, Kristine Godziuk, Carla M Prado, Linda J Woodhouse, Mary Forhan

Abstract

Background: The progressive, debilitating nature of knee and hip osteoarthritis can result in severe, persistent pain and disability, potentially leading to a need for total joint arthroplasty (TJA) in end-stage osteoarthritis. TJA in adults with obesity is associated with increased surgical risk and prolonged recovery, yet classifying obesity only using body mass index (BMI) precludes distinction of obesity phenotypes and their impact on surgical risk and recovery. The sarcopenic obesity phenotype, characterized by high adiposity and low skeletal muscle mass, is associated with higher infection rates, poorer function, and slower recovery after surgery in other clinical populations, but not thoroughly investigated in osteoarthritis. The rising prevalence and impact of this phenotype demands further attention in osteoarthritis treatment models of care, particularly as osteoarthritis-related pain, disability, and current treatment practices may inadvertently be influencing its development.

Methods: A scoping review was used to examine the extent of evidence of sarcopenic obesity in adults with hip or knee osteoarthritis. Medline, CINAHL, Web of Science and EMBASE were systematically searched from inception to December 2017 with keywords and subject headings related to obesity, sarcopenia and osteoarthritis.

Results: Eleven studies met inclusion criteria, with indications that muscle weakness, low skeletal muscle mass or sarcopenia are present alongside obesity in this population, potentially impacting therapeutic outcomes, and TJA surgical risk and recovery.

Conclusions: Consideration of sarcopenic obesity should be included in osteoarthritis patient assessments.

Keywords: Arthroplasty; BMI; Body composition; Osteoarthritis; Sarcopenic obesity.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

All authors declare they have no competing interests that would create a conflict of interest in connection with this manuscript. KG, CMP and MF have no disclosures; LJW has received funding from the Research Advisory Board of Focus on Therapeutic Outcomes Inc. (FOTO) and the American Physical Therapy Association Outcome Measures Registry.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Relationship between aging, obesity and osteoarthritis and the development of sarcopenic obesity
Fig. 2
Fig. 2
Systematic search strategy and results

References

    1. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States, part II for the National Arthritis Data Workgroup. Arthritis Rheum. 2008;58(1):26–35. doi: 10.1002/art.23176.
    1. Bombardier C, Hawker G, Mosher D. The impact of arthritis in Canada : today and over the next 30 years. Arthritis Alliance of Canada. 2011;
    1. Bastick A, Runhaar J, Belo J, Bierma-Zeinstra S. Prognostic factors for progression of clinical osteoarthritis of the knee: a systematic review of observational studies. Arthritis Res Ther. 2015;17(152):1–13.
    1. Tian W, DeJong G, Brown M, Hsieh CH, Zamfirov ZP, Horn SD. Looking upstream: factors shaping the demand for postacute joint replacement rehabilitation. Arch Phys Med Rehabil. 2009;90(8):1260–1268. doi: 10.1016/j.apmr.2008.10.035.
    1. Bumpass DB, Nunley RM. Assessing the value of a total joint replacement. Curr Rev Musculoskelet Med. 2012;5(4):274–282. doi: 10.1007/s12178-012-9139-6.
    1. Canadian Joint Replacement Registry . 2002 Report Total Hip and Total Knee Replacements in Canada. 2002.
    1. Canadian Institute for Health Information (CIHI). Hip and Knee Replacements in Canada: Canadian Joint Replacement Registry 2015–2016 Quick Stats.; 2017.
    1. OECD/EU. Health at a Glance: Europe 2016 – State of Health in the EU Cycle. Paris; 2016.
    1. Dowsey MM, Gunn J, Choong PFM. Selecting those to refer for joint replacement: who will likely benefit and who will not? Best Pract Res Clin Rheumatol. 2014;28(1):157–171. doi: 10.1016/j.berh.2014.01.005.
    1. Kerkhoffs GMMJ, Servien E, Dunn W, Dahm D, Bramer JAM, Haverkamp D. The influence of obesity on the complication rate and outcome of total knee arthroplasty. J Bone Jt Surg. 2012;94(20):1839–1844. doi: 10.2106/JBJS.K.00820.
    1. Si H, Zeng Y, Shen B, et al. The influence of body mass index on the outcomes of primary total knee arthroplasty. Knee surgery, Sport Traumatol Arthrosc. 2015;23(6):1824–1832. doi: 10.1007/s00167-014-3301-1.
    1. Samson AJ, Mercer GE, Campbell DG. Total knee replacement in the morbidly obese: a literature review. ANZ J Surg. 2010;80(9):595–599. doi: 10.1111/j.1445-2197.2010.05396.x.
    1. American Academy of Orthopaedic Surgeons. Management of Osteoarthritis of the Hip: Evidence-Based Clinical Practice Guideline.; 2017.
    1. Springer B, Parvizi J, Austin M, et al. Obesity and total joint arthroplasty. A literature based review. J Arthroplast. 2013;28(5):714–721. doi: 10.1016/j.arth.2013.02.011.
    1. Vaishya R, Vijay V, Wamae D, Agarwal AK. Is total knee replacement justified in the morbidly obese? A systematic review. Cureus. 2016;8(9):e804.
    1. Springer BD, Carter JT, McLawhorn AS, et al. Obesity and the role of bariatric surgery in the surgical management of osteoarthritis of the hip and knee: a review of the literature. Surg Obes Relat Dis. 2016:1–8.
    1. Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas. 2016;89:22–28. doi: 10.1016/j.maturitas.2016.04.006.
    1. Vasarhelyi EM, MacDonald SJ. The influence of obesity on total joint arthroplasty. J Bone Joint Surg Br. 2012;94(11 Suppl A):100–102.
    1. Roth KC, Bessems G. Sorry, but you will have to lose weight before receiving your knee replacement. Erasmus J Med. 2013;3(2):54–57.
    1. Lui M, Jones CA, Westby MD. Effect of non-surgical, non-pharmacological weight loss interventions in patients who are obese prior to hip and knee arthroplasty surgery: a rapid review. Syst Rev. 2015;4(1):121. doi: 10.1186/s13643-015-0107-2.
    1. Demling RH. Nutrition, anabolism, and the wound healing process: an overview. Eplasty. 1954;9:65–94.
    1. Prado CM, Gonzalez MC, Heymsfield SB. Body composition phenotypes and obesity paradox. Curr Opin Clin Nutr Metab Care. 2015;18(6):535–551. doi: 10.1097/MCO.0000000000000216.
    1. Kuk JL, Lee S, Heymsfield SB, Ross R. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr. 2005;81(6):1330–1334. doi: 10.1093/ajcn/81.6.1330.
    1. Romero-Corral A, Somers VK, Sierra-Johnson J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2010;31(6):737–746. doi: 10.1093/eurheartj/ehp487.
    1. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694–701. doi: 10.1093/ajcn/72.3.694.
    1. Johnson Stoklossa C, Sharma A, Forhan M, Siervo M, Padwal R, Prado C. Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J Nutr Metab. 2017;
    1. Gonzalez MC, Correia MITD, Heymsfield SB. A requiem for BMI in the clinical setting. Curr Opin Clin Nutr Metab Care. 2017;20(5):1. doi: 10.1097/MCO.0000000000000395.
    1. Nishigori T, Tsunoda S, Okabe H, et al. Impact of sarcopenic obesity on surgical site infection after laparoscopic total gastrectomy. Ann Surg Oncol. 2016:524–31.
    1. Visser M, van Venrooij LMW, Vulperhorst L, et al. Sarcopenic obesity is associated with adverse clinical outcome after cardiac surgery. Nutr Metab Cardiovasc Dis. 2013;23(6):511–518. doi: 10.1016/j.numecd.2011.12.001.
    1. Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–635. doi: 10.1016/S1470-2045(08)70153-0.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Prado CM, Siervo M, Mire E, et al. A population-based approach to define body-composition. Am J Clin Nutr. 2014:1369–78.
    1. Cherin P, Voronska E, Fraoucene N, De Jaeger C. Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res. 2014;26(2):137–146. doi: 10.1007/s40520-013-0132-8.
    1. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr. 2002;50:889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):177–180.
    1. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol: Biol Sci. 2002;57:B359–B365.
    1. Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obes Res. 2004;12(6):887–888. doi: 10.1038/oby.2004.107.
    1. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995–2004. doi: 10.1038/oby.2004.250.
    1. Tian S, Xu Y. Association of sarcopenic obesity with the risk of all-cause mortality: a meta-analysis of prospective cohort studies. Geriatr Gerontol Int. 2016;16:155–166. doi: 10.1111/ggi.12579.
    1. Prado CM, Wells JCK, Smith SR, Stephan BCM, Siervo M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31(5):583–601. doi: 10.1016/j.clnu.2012.06.010.
    1. Kallwitz ER. Sarcopenia and liver transplant: the relevance of too little muscle mass. World J Gastroenterol. 2015;21(39):10982–10993. doi: 10.3748/wjg.v21.i39.10982.
    1. Organization for Economic Cooperation and Development. Obesity Update, 2017.
    1. Roubenoff R. Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci. 2000;904:553–557. doi: 10.1111/j.1749-6632.2000.tb06515.x.
    1. Juby AG. A healthy body habitus is more than just a normal BMI: implications of sarcopenia and sarcopenic obesity. Maturitas. 2014;78(4):243–244. doi: 10.1016/j.maturitas.2014.05.013.
    1. Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology. 2015;54(4):588–600. doi: 10.1093/rheumatology/keu464.
    1. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis. 2008;18(5):388–395. doi: 10.1016/j.numecd.2007.10.002.
    1. Lee D, Drenowatz C, Blair SN. Physical activity and sarcopenic obesity: definition, assessment, prevalence and mechanism. Futur Sci. 2016;
    1. Griffin TM, Huffman KM. Insulin resistance: releasing the brakes on synovial inflammation and osteoarthritis? Arthritis Rheumatol. 2016;68(6):1–30. doi: 10.1002/art.39586.
    1. Cauley JA. An overview of sarcopenic obesity. J Clin Densitom. 2015;18(4):499–505. doi: 10.1016/j.jocd.2015.04.013.
    1. De Ceuninck F, Fradin A, Pastoureau P. Bearing arms against osteoarthritis and sarcopenia: when cartilage and skeletal muscle find common interest in talking together. Drug Discov Today. 2014;19(3):305–311. doi: 10.1016/j.drudis.2013.08.004.
    1. Papalia R, Zampogna B, Torre G, et al. Sarcopenia and its relationship with osteoarthritis: risk factor or direct consequence? Musculoskelet Surg. 2014;98(1):9–14. doi: 10.1007/s12306-014-0311-6.
    1. Karlsson MK, Magnusson H, Coster M, Karlsson C, Rosengren BE. Patients with knee osteoarthritis have a phenotype with higher bone mass, higher fat mass, and lower lean body mass. Clin Orthop Relat Res. 2015;473(1):258–264. doi: 10.1007/s11999-014-3973-3.
    1. Karlsson MK, Magnusson H, Coster MC, Vonschewelov T, Karlsson C, Rosengren BE. Patients with hip osteoarthritis have a phenotype with high bone mass and low lean body mass. Clin Orthop Relat Res. 2014;472(4):1224–1229. doi: 10.1007/s11999-013-3395-7.
    1. Karlsson MK, Karlsson C, Magnusson H, et al. Individuals with primary osteoarthritis have different phenotypes depending on the affected joint - a case control study from southern Sweden including 514 participants. Open Orthop J. 2014;8:450–456. doi: 10.2174/1874325001408010450.
    1. Purcell S, Thornberry R, Elliott SA, et al. Body composition, strength, and dietary intake of patients with hip or knee osteoarthritis. Can J Diet Pract Res. 2016;77:1–5. doi: 10.3148/cjdpr-2015-037.
    1. Visser AW, de Mutsert R, Loef M, et al. The role of fat mass and skeletal muscle mass in knee osteoarthritis is different for men and women: the NEO study. Osteoarthr Cartil. 2014;22(2):197–202. doi: 10.1016/j.joca.2013.12.002.
    1. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. doi: 10.1186/1748-5908-5-69.
    1. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. doi: 10.1080/1364557032000119616.
    1. Batsis JA, Zbehlik AJ, Pidgeon D, Bartels SJ. Dynapenic obesity and the effect on long-term physical function and quality of life: data from the osteoarthritis initiative. BMC Geriatr. 2015;15(1):118. doi: 10.1186/s12877-015-0118-9.
    1. Ji HM, Han J, Jin DS, Suh H, Chung YS, Won YY. Sarcopenia and sarcopenic obesity in patients undergoing orthopedic surgery. Clin Orthop Surg. 2016;8(2):194–202. doi: 10.4055/cios.2016.8.2.194.
    1. Jin WS, Choi EJ, Lee SY, Bae EJ, Lee T, Park J. Relationships among obesity, sarcopenia, and osteoarthritis in the elderly. J Obes Metab Syndr. 2017:36–44.
    1. Knoop J, Van Der Leeden M, Thorstensson CA, et al. Identification of phenotypes with different clinical outcomes in knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res. 2011;63(11):1535–1542. doi: 10.1002/acr.20571.
    1. Lee SY, Ro HJ, Chung SG, Kang SH, Seo KM, Kim DK. Low skeletal muscle mass in the lower limbs is independently associated to knee osteoarthritis. PLoS One. 2016;11(11):1–11.
    1. Lee S, Kim TN, Kim SH. Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: a cross-sectional study. Arthritis Rheum. 2012;64(12):3947–3954. doi: 10.1002/art.37696.
    1. Manoy P, Anomasiri W, Yuktanandana P, et al. Elevated serum leptin levels are associated with low vitamin D, sarcopenic obesity, poor muscle strength, and physical performance in knee osteoarthritis. Biomarkers. 2017:1–22.
    1. Oosting E, Hoogeboom TJ, Dronkers JJ, Visser M, Akkermans RP, NLU VM. The influence of muscle weakness on the association between obesity and inpatient recovery from total hip arthroplasty. J Arthroplasty. 2016;
    1. Segal NA, Toda Y. Absolute reduction in lower limb lean body mass in Japanese women with knee osteoarthritis. J Clin Rheumatol. 2005;11(5):245–249. doi: 10.1097/01.rhu.0000182148.74893.3f.
    1. Suh DH, Han KD, Hong JY, et al. Body composition is more closely related to the development of knee osteoarthritis in women than men: a cross-sectional study using the fifth Korea National Health and nutrition examination survey (KNHANES V-1, 2) Osteoarthr Cartil. 2016;24(4):605–611. doi: 10.1016/j.joca.2015.10.011.
    1. Clémence J, Bernard M, Lorraine B, Francis G, Anne-Christine R. Body composition and clinical symptoms in patients with hip or knee osteoarthritis: results from the KHOALA cohort. Semin Arthritis Rheum. 2017;
    1. Newman AB, Kupelian V, Visser M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–1609. doi: 10.1046/j.1532-5415.2003.51534.x.
    1. Bosy-Westphal A, Müller MJ. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease - there is need for a unified definition. Int J Obes. 2015;39(3):379–386. doi: 10.1038/ijo.2014.161.
    1. Donini LM, Poggiogalle E, Migliaccio S, Aversa A, Pinto A. Body composition in sarcopenic obesity: systematic review of the literature. Med J Nutrition Metab. 2013;6(3):191–198. doi: 10.1007/s12349-013-0135-1.
    1. Batsis JA, Barre LK, Mackenzie TA, Pratt SI, Lopez-Jimenez F, Bartels SJ. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the National Health and nutrition examination survey 1999-2004. J Am Geriatr Soc. 2013;61(6):974–980. doi: 10.1111/jgs.12260.
    1. Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “ cachexia-anorexia in chronic wasting diseases” and “ nutrition in geriatrics.”. Clin Nutr. 2010;29(2):154–159. doi: 10.1016/j.clnu.2009.12.004.
    1. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. Journals Gerontol - Ser A Biol Sci Med Sci. 2014;69 A(5):547–558.
    1. Ilich JZ, Kelly OJ, Inglis JE. Osteosarcopenic obesity syndrome: what is it and how can it be identified and diagnosed? Curr Gerontol Geriatr Res. 2016;
    1. Tsonga T, Michalopoulou M, Malliou P, et al. Analyzing the history of falls in patients with severe knee osteoarthritis. Clin Orthop Surg. 2015;7(4):449–456. doi: 10.4055/cios.2015.7.4.449.
    1. Chernoff R. Protein and older adults. J Am Coll Nutr. 2004;23(6 Suppl):627S–630S. doi: 10.1080/07315724.2004.10719434.
    1. Shyam Kumar AJ, Beresford-Cleary N, Kumar P, et al. Preoperative grip strength measurement and duration of hospital stay in patients undergoing total hip and knee arthroplasty. Eur J Orthop Surg Traumatol. 2013;23:553–556. doi: 10.1007/s00590-012-1029-5.
    1. Mau-Moeller A, Behrens M, Felser S, et al. Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty. Biomed Res Int. 2015.
    1. Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enter Nutr. 2014;38(8):940–953. doi: 10.1177/0148607114550189.

Source: PubMed

3
Se inscrever