Inflammatory process in Alzheimer's Disease

Marco A Meraz-Ríos, Danira Toral-Rios, Diana Franco-Bocanegra, Juana Villeda-Hernández, Victoria Campos-Peña, Marco A Meraz-Ríos, Danira Toral-Rios, Diana Franco-Bocanegra, Juana Villeda-Hernández, Victoria Campos-Peña

Abstract

Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Histopathologically is characterized by the presence of two major hallmarks, the intracellular neurofibrillary tangles (NFTs) and extracellular neuritic plaques (NPs) surrounded by activated astrocytes and microglia. NFTs consist of paired helical filaments of truncated tau protein that is abnormally hyperphosphorylated. The main component in the NP is the amyloid-β peptide (Aβ), a small fragment of 40-42 amino acids with a molecular weight of 4 kD. It has been proposed that the amyloid aggregates and microglia activation are able to favor the neurodegenerative process observed in AD patients. However, the role of inflammation in AD is controversial, because in early stages the inflammation could have a beneficial role in the pathology, since it has been thought that the microglia and astrocytes activated could be involved in Aβ clearance. Nevertheless the chronic activation of the microglia has been related with an increase of Aβ and possibly with tau phosphorylation. Studies in AD brains have shown an upregulation of complement molecules, pro-inflammatory cytokines, acute phase reactants and other inflammatory mediators that could contribute with the neurodegenerative process. Clinical trials and animal models with non-steroidal anti-inflammatory drugs (NSAIDs) indicate that these drugs may decrease the risk of developing AD and apparently reduce Aβ deposition. Finally, further studies are needed to determine whether treatment with anti-inflammatory strategies, may decrease the neurodegenerative process that affects these patients.

Keywords: Alzheimer disease; amyloid-β; anti-inflammatory strategies; astrocyte; microglia; neurodegeneration; neuroinflammation; pro-inflammatory cytokine.

Figures

Figure 1
Figure 1
Inflammation in Alzheimer's disease. The Aβ peptide produced by APP processing, form aggregates that activate microglia through TLRs and RAGE receptors. These receptors in turn, activate NF-κ B and AP-1 transcription factors, which induce the reactive oxygen species (ROS) production and the expression of inflammatory cytokines (IL-1, IL-6, TNF). These inflammatory factors directly acting on the neurons and also stimulate the astrocytes, which amplify the pro-inflammatory signals, inducing a neurotoxic effects. The inflammatory mediators generate by resident CNS cells, induce the production of adhesion molecules and chemokines, which recruit peripheral immune cells.
Figure 2
Figure 2
Neuronal damage and Aβ deposition triggers microglial and astrocytes activation and the generation of inflammation molecular mediators. The acute production of molecules of the complement system (C1q, C3, and C5), pro-inflammatory cytokines (IL-1, IL-6, TNF-α), chemokines (CCL2, MIP-1α, MIP-1β, and IL-8) mediate the Aβ clearance. However, in a chronic stage these molecules could promote an increased expression and alteration of APP processing, Aβ deposition, Tau phosphorylation and neurodegeneration. Also, another effect of glial cells includes the generation of NO that promotes oxidative stress. The inflammatory microenvironment favors the production of COX-2 in neurons that leads to apoptosis. In contrast, it has been proposed that glial cells could mediate neuronal survival, by the production of TGF-β and neurotrophic factors (BDNF and NGF), but the disease progression results in failure to repair neurons.

References

    1. Ager R. R., Fonseca M. I., Chu S. H., Sanderson S. D., Taylor S. M., Woodruff T. M., et al. (2010). Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer's disease. J. Neurochem. 113, 389–401 10.1111/j.1471-4159.2010.06595.x
    1. Aisen P. S., Davis K. L., Berg J. D., Schafer K., Campbell K., Thomas R. G., et al. (2000). A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's Disease Cooperative Study. Neurology 54, 588–593 10.1212/WNL.54.3.588
    1. Aisen P. S., Schaffer K. A., Grundman M., Pfeiffer E., Sano M., Davis K. L., et al. (2003). Effects of rofecoxib or naproxen vs placebo on Alzheimer's Disease progression. a randomized controlled trial. JAMA 289, 2819–2826 10.1001/jama.289.21.2819
    1. Akama K. T., Albanese C., Pestell R. G., Van Eldik L. J. (1998). Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 95, 5795–5800 10.1073/pnas.95.10.5795
    1. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., et al. (2000). Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 10.1016/S0197-4580(00)00124-X
    1. Akiyama H., Kondo H., Mori H., Kametani F., Nishimura T., Ikeda K., et al. (1996). The amino-terminally truncated forms of amyloid beta-protein in brain macrophages in the ischemic lesions of Alzheimer's disease patients. Neurosci. Lett. 219, 115–118 10.1016/S0304-3940(96)13197-9
    1. Ashutosh Kou W., Cotter R., Borgmann K., Wu L., Persidsky R., et al. (2011). CXCL8 protects human neurons from amyloid-beta-induced neurotoxicity: relevance to Alzheimer's disease. Biochem. Biophys. Res. Commun. 412, 565–571 10.1016/j.bbrc.2011.07.127
    1. Austin S. A., Santhanam A. V., Katusic Z. S. (2010). Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ. Res. 107, 1498–1502 10.1161/CIRCRESAHA.110.233080
    1. Avramovich J., Amit T., Youdim M. B. H. (2002). Non-steroidal anti-inflammatory drugs stimulate secretion of on-amyloidogenic precursor protein. J. Biol. Chem. 277, 31466–31473 10.1074/jbc.M201308200
    1. Barnes P. J. (2006). How corticosteroids control inflammation: quintiles prize lecture 2005. Br. J. Pharmacol. 148, 245–254 10.1038/sj.bjp.0706736
    1. Beato M., Chalepakis G., Schauer M., Slater E. P. (1989). DNA regulatory elements for steroid hormones. J. Steroid Biochem. 32, 737–747 10.1016/0022-4731(89)90521-9
    1. Beeri M. S., Schmeidler J., Lesser G. T., Maroukian M., West R., Leung S., et al. (2012). Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol. Aging 33, 1258–1264 10.1016/j.neurobiolaging.2011.02.011
    1. Bendlin B. B., Newman L. M., Ries M. L., Puglielli L., Carlsson C. M., Sager M. A., et al. (2010). NSAIDs may protect against age-related brain atrophy. Front. Aging Neurosci. 2, 1–8 10.3389/fnagi.2010.00035
    1. Bishop A., Anderson J. E. (2005). NO signaling in the CNS: from the physiological to the pathological. Toxicology 208, 193–205 10.1016/j.tox.2004.11.034
    1. Blasko I., Stampfer-Kountchev M., Robatscher P., Veerhuis R., Eikelenboom P., Grubeck-Loebenstein B. (2004). How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell 3, 169–176 10.1111/j.1474-9728.2004.00101.x
    1. Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., Grubeck-Loebenstein B. (2000). Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol. Dis. 7, 682–689 10.1006/nbdi.2000.0321
    1. Blum-Degen D., Muller T., Kuhn W., Gerlach M., Przuntek H., Riederer P. (1995). Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci. Lett. 202, 17–20 10.1016/0304-3940(95)12192-7
    1. Boimel M., Grigoriadis N., Lourbopoulos A., Haber E., Abramsky O., Rosenmann H. (2010). Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp. Neurol. 224, 472–485 10.1016/j.expneurol.2010.05.010
    1. Boutajangout A., Quartermain D., Sigurdsson E. M. (2010). Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30, 16559–16566 10.1523/JNEUROSCI.4363-10.2010
    1. Breder C. D., Dewitt D., Kraig R. P. (1995). Characterization of inducible cyclooxygenase in rat brain. J. Comp. Neurol. 355, 296–315 10.1002/cne.903550208
    1. Breitner J. C. S., Haneuse S. J. P. A., Walker R., Dublin S., Crane P. K., Gray S. L., et al. (2009). Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72, 1899–1905 10.1212/WNL.0b013e3181a18691
    1. Broe G. A., Grayson D. A., Creasey H. M., Waite L. M., Casey B. J., Bennett H. P., et al. (2000). Anti-inflammatory drugs protect against Alzheimer's Disease at low doses. Arch. Neurol. 57, 1586–1591 10.1001/archneur.57.11.1586
    1. Budas G., Coughlan C. M., Seckl J. R., Breen K. C. (1999). The effect of corticosteroids on amyloid β precursor protein/amyloid precursor-like protein expression and processing in vivo. Neurosci. Lett. 276, 61–64 10.1016/S0304-3940(99)00790-9.
    1. Buttini M., Masliah E., Barbour R., Grajeda H., Motter R., Johnson-Wood K., et al. (2005). Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer's disease. J. Neurosci. 25, 9096–9101 10.1523/JNEUROSCI.1697-05.2005
    1. Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D. A., Stella A. M. (2007). Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766–775 10.1038/nrn2214
    1. Carrero I., Gonzalo M. R., Martin B., Sanz-Anquela J. M., Arevalo-Serrano J., Gonzalo-Ruiz A. (2012). Oligomers of beta-amyloid protein (Abeta1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp. Neurol. 236, 215–227 10.1016/j.expneurol.2012.05.004
    1. Coma M., Serenó L., Da Rocha-Souto B., Scotton T. C., España J., Sánchez M. B., et al. (2010). Triflusal reduces dense-core plaque load, associated axonal alterations and inflammatory changes, and rescues cognition in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 38, 482–491
    1. Combs C. K., Karlo J. C., Kao S. C., Landreth G. E. (2001). beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188
    1. Correa J. D., Starling D., Teixeira A. L., Caramelli P., Silva T. A. (2011). Chemokines in CSF of Alzheimer's disease patients. Arq. Neuropsiquiatr. 69, 455–459 10.1590/S0004-282X2011000400009
    1. Coté S., Carmichael P.-H., Verrault R., Lindsay J., Lefebvre J., Laurin D. (2012). Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer's disease. Alzheimers Dement. 8, 219–226 10.1016/j.jalz.2011.03.012
    1. Cotman C., Anderson A. (1995). A potential role for apoptosis in neurodegeneration and Alzheimer's disease. Mol. Neurobiol. 10, 19–45 10.1007/BF02740836
    1. Cyster J. G. (1999). Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 10.1126/science.286.5447.2098
    1. Chai X., Wu S., Murray T. K., Kinley R., Cella C. V., Sims H., et al. (2011). Passive immunization with anti-tau antibodies in two transgenic models reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 10.1074/jbc.M111.229633
    1. Chakrabarty P., Jansen-West K., Beccard A., Ceballos-Diaz C., Levites Y., Verbeeck C., et al. (2010). Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 24, 548–559 10.1096/fj.09-141754
    1. Chartier-Harlin M. C., Crawford F., Hamandi K., Mullan M., Goate A., Hardy J., et al. (1991). Screening for the beta-amyloid precursor protein mutation (APP717: Val—Ile) in extended pedigrees with early onset Alzheimer's disease. Neurosci. Lett. 129, 134–135 10.1016/0304-3940(91)90738-F
    1. Chibnik L. B., Shulman J. M., Leurgans S. E., Schneider J. A., Wilson R. S., Tran D., et al. (2011). CR1 is associated with amyloid plaque burden and age-related cognitive decline. Ann. Neurol. 69, 560–569 10.1002/ana.22277
    1. Choi S. H., Bosetti F. (2009). Cyclooxygenase-1 null mice show reduced neuroinflammation in response to beta-amyloid. Aging 1, 234–244
    1. Desai M. K., Guercio B. J., Narrow W. C., Bowers W. J. (2011). An Alzheimer's disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia 59, 627–640 10.1002/glia.21131
    1. Dickson D. W., Farlo J., Davies P., Crystal H., Fuld P., Yen S. H. (1988). Alzheimer's disease. a double-labeling immunohistochemical study of senile plaques. Am. J. Pathol. 132, 86–101
    1. Dickson D. W., Rogers J. (1992). Neuroimmunology of Alzheimer's Disease: a conference report. Neurobiol. Aging 13, 793–798 10.1016/0197-4580(92)90104-6
    1. Dubois R. N., Abramson S. B., Crofford L., Gupta R. A., Simon L. S., Van De Putte L. B. A., et al. (1998). Cyclooxygenase in biology and disease. FASEB J. 12, 1063–1073
    1. Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Perez-Tur J., et al. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 10.1038/383710a0
    1. El Khoury J., Hickman S. E., Thomas C. A., Loike J. D., Silverstein S. C. (1998). Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol. Aging 19, S81–S84 10.1016/S0197-4580(98)00036-0
    1. Fan R., Defilippis K., Van Nostrand W. E. (2007). Induction of complement proteins in a mouse model for cerebral microvascular a beta deposition. J. Neuroinflammation 4, 22 10.1186/1742-2094-4-22
    1. Fiala M., Zhang L., Gan X., Sherry B., Taub D., Graves M. C., et al. (1998). Amyloid-beta induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol. Med. 4, 480–489
    1. Fillit H., Ding W., Buee L., Kalman J., Alstiel L., Lawlor B., et al. (1991). Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci. Lett. 129, 318–320 10.1016/0304-3940(91)90490-K
    1. Flanders K. C., Lippa C. F., Smith T. W., Pollen D. A., Sporn M. B. (1995). Altered expression of transforming growth factor-beta in Alzheimer's disease. Neurology 45, 1561–1569 10.1212/WNL.45.8.1561
    1. Flower R. J., Harvey E. A, Kingston W. P. (1976). Inflammatory effects of prostaglandin D2 in rat and human skin. Br. J. Pharmacol. 56, 229–233 10.1111/j.1476-5381.1976.tb07446.x
    1. Fonseca M. I., Ager R. R., Chu S. H., Yazan O., Sanderson S. D., Laferla F. M., et al. (2009). Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J. Immunol. 183, 1375–1383 10.4049/jimmunol.0901005
    1. Fonseca M. I., Zhou J., Botto M., Tenner A. J. (2004). Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J. Neurosci. 24, 6457–6465 10.1523/JNEUROSCI.0901-04.2004
    1. Forneris F., Wu J., Gros P. (2012). The modular serine proteases of the complement cascade. Curr. Opin. Struct. Biol. 22, 333–341 10.1016/j.sbi.2012.04.001
    1. Fourrier A., Letenneur L., Bégaud B., Dartigues J. F. (1996). Nonsteroidal anti-inflammatory drug use and cognitive function in the elderly: inconclusive results from a population.based cohort study. J. Clin. Epidmiol. 49, 1201 10.1016/0895-4356(96)00202-8
    1. Frackowiak J., Wisniewski H. M., Wegiel J., Merz G. S., Iqbal K., Wang K. C. (1992). Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol. 84, 225–233 10.1007/BF00227813
    1. Galimberti D., Schoonenboom N., Scarpini E., Scheltens P. (2003). Chemokines in serum and cerebrospinal fluid of Alzheimer's disease patients. Ann. Neurol. 53, 547–548 10.1002/ana.10531
    1. Gate D., Rezai-Zadeh K., Jodry D., Rentsendorj A., Town T. (2010). Macrophages in Alzheimer's disease: the blood-borne identity. J. Neural Transm. 117, 961–970 10.1007/s00702-010-0422-7
    1. Glenner G. G., Wong C. W., Quaranta V., Eanes E. D. (1984). The amyloid deposits in Alzheimer's disease: their nature and pathogenesis. Appl. Pathol. 2, 357–369
    1. Goate A., Chartier-Harlin M. C., Mullan M., Brown J., Crawford F., Fidani L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 10.1038/349704a0
    1. Goldgaber D., Harris H. W., Hla T., Maciag T., Donnelly R. J., Jacobsen J. S., et al. (1989). Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 86, 7606–7610 10.1073/pnas.86.19.7606
    1. Goodwin J. L., Kehrli M. E., Jr., Uemura E. (1997). Integrin Mac-1 and beta-amyloid in microglial release of nitric oxide. Brain Res. 768, 279–286 10.1016/S0006-8993(97)00653-7
    1. Green K. N., Billings L. M., Roozendaal B., McGaugh J. L., Laferla F. M. (2006). Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer's disease. J. Neurosci. 26, 9047–9056 10.1523/JNEUROSCI.2797-06.2006
    1. Griffin W. S., Sheng J. G., Roberts G. W., Mrak R. E. (1995). Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281 10.1097/00005072-199503000-00014
    1. Griffin W. S., Stanley L. C., Ling C., White L., Macleod V., Perrot L. J., et al. (1989). Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 86, 7611–7615 10.1073/pnas.86.19.7611
    1. Guix F. X., Wahle T., Vennekens K., Snellinx A., Chavez-Gutierrez L., Ill-Raga G., et al. (2012). Modification of gamma-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease. EMBO Mol. Med. 4, 660–673 10.1002/emmm.201200243
    1. Haga S., Ikeda K., Sato M., Ishii T. (1993). Synthetic Alzheimer amyloid beta/A4 peptides enhance production of complement C3 component by cultured microglial cells. Brain Res. 601, 88–94 10.1016/0006-8993(93)91698-R
    1. Halassa M. M., Haydon P. G. (2010). Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355 10.1146/annurev-physiol-021909-135843
    1. Henneberger C., Papouin T., Oliet S. H., Rusakov D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 10.1038/nature08673
    1. Hillmann A., Hahn S., Schilling S., Hoffmann T., Demuth H.-U., Bulic B., et al. (2012). No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 33, 833.e39–833.e50 10.1016/j.neurobiolaging.2011.08.006
    1. Hirohata M., Ono K., Naiki H., Yamada M. (2005). Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer's ß-amyloid fibrils in vitro. Neuropharmacology 49, 1088–1099 10.1016/j.neuropharm.2005.07.004
    1. Ho L., Purohit D., Haroutunian V., Luterman J. D., Willis F., Naslund J., et al. (2001). Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch. Neurol. 58, 487–492 10.1001/archneur.58.3.487
    1. Hock C., Konietzko U., Streffer J. R., Tracy J., Signorell A., Muller-Tillmanns B., et al. (2003). Antibodies against ß-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 10.1016/S0896-6273(03)00294-0
    1. Hoozemans J. J., Van Haastert E. S., Veerhuis R., Arendt T., Scheper W., Eikelenboom P., et al. (2005). Maximal COX-2 and ppRb expression in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia in Alzheimer's disease. J. Neuroinflammation 2, 27 10.1186/1742-2094-2-27
    1. Hoozemans J. J., Veerhuis R., Janssen I., Rozemuller A. J., Eikelenboom P. (2001). Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer's disease. Exp. Gerontol. 36, 559–570 10.1016/S0531-5565(00)00226-6
    1. Hull M., Berger M., Volk B., Bauer J. (1996). Occurrence of interleukin-6 in cortical plaques of Alzheimer's disease patients may precede transformation of diffuse into neuritic plaques. Ann. N.Y. Acad. Sci. 777, 205–212 10.1111/j.1749-6632.1996.tb34420.x
    1. In'T Veld B. A., Ruitenberg A., Hofman A., Launer L., Van Duijn C. M., Stijnen T., et al. (2001). Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer's Disease. N. Eng. J. Med. 345, 1515–1521 10.1056/NEJMoa010178
    1. Ishizuka K., Kimura T., Igata-Yi R., Katsuragi S., Takamatsu J., Miyakawa T. (1997). Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer's disease. Psychiatry Clin. Neurosci. 51, 135–138 10.1111/j.1440-1819.1997.tb02375.x
    1. Iversen L. L., Mortishire-Smith R. J., Pollack S. J., Shearman M. S. (1995). The toxicity in vitro of beta-amyloid protein. Biochem. J. 311(Pt 1), 1–16
    1. Jiang H., Hampel H., Prvulovic D., Wallin A., Blennow K., Li R., et al. (2011). Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer's disease. Mol. Neurodegener. 6, 69 10.1186/1750-1326-6-69
    1. Jonker C., Comijs H. C., Smit J. H. (2003). Does aspirin or other NSAIDs reduce the risk of cognitive decline in elderly persons? Results from a population-based study. Neurobiol. Aging 24, 583–588 10.1016/S0197-4580(02)00188-4
    1. Joo Y., Kim H.-S., Woo R.-S., Park C. H., Shin K.-Y., Lee J.-P., et al. (2006). Mefenamic acid shows neuroprotective effects and improves cognitive impairment in in vitro and in vivo Alzheimer's Disease models. Mol. Pharmacol. 69, 76–84
    1. Kamata H., Honda S., Maeda S., Chang L., Hirata H., Karin M. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 10.1016/j.cell.2004.12.041
    1. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., et al. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 10.1038/325733a0
    1. Keil U., Bonert A., Marques C. A., Scherping I., Weyermann J., Strosznajder J. B., et al. (2004). Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J. Biol. Chem. 279, 50310–50320 10.1074/jbc.M405600200
    1. Kitazawa M., Cheng D., Tsukamoto M. R., Koike M. A., Wes P. D., Vasilevko V., et al. (2011). Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J. Immunol. 187, 6539–6549 10.4049/jimmunol.1100620
    1. Kitazawa M., Yamasaki T. R., Laferla F. M. (2004). Microglia as a potential bridge between the amyloid beta-peptide and tau. Ann. N.Y. Acad. Sci. 1035, 85–103 10.1196/annals.1332.006
    1. Kobayashi K., Hayashi M., Nakano H., Fukutani Y., Sasaki K., Shimazaki M., et al. (2002). Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 28, 238–251 10.1046/j.1365-2990.2002.00390.x
    1. Konig H. G., Kogel D., Rami A., Prehn J. H. (2005). TGF-{beta}1 activates two distinct type I receptors in neurons: implications for neuronal NF-{kappa}B signaling. J. Cell Biol. 168, 1077–1086 10.1083/jcb.200407027
    1. Krieglstein K., Strelau J., Schober A., Sullivan A., Unsicker K. (2002). TGF-beta and the regulation of neuron survival and death. J. Physiol. Paris 96, 25–30 10.1016/S0928-4257(01)00077-8
    1. Kummer M. P., Hulsmann C., Hermes M., Axt D., Heneka M. T. (2012). Nitric oxide decreases the enzymatic activity of insulin degrading enzyme in APP/PS1 mice. J. Neuroimmune Pharmacol. 7, 165–172 10.1007/s11481-011-9339-7
    1. Laske C., Stransky E., Fritsche A., Eschweiler G., Leyhe T. (2009). Inverse association of cortisol serum levels with T-tau, P-tau 181 and P-tau 231 peptide levels and T-tau/Aβ 1-42 ratios in CSF in patients with mild Alzheimer's disease dementia. Eur. Arch. Psychiatry Clin. Neurosci. 259, 80–85 10.1007/s00406-008-0838-3
    1. Levy-Lahad E., Wijsman E. M., Nemens E., Anderson L., Goddard K. A., Weber J. L., et al. (1995). A familial Alzheimer's disease locus on chromosome 1. Science 269, 970–973 10.1126/science.7638621
    1. Li G., Shen Y. C., Li Y. T., Chen C. H., Zhau Y. W., Silverman J. M. (1992). A case-control study of Alzheimer's disease in China. Neurology 42, 1481–1488 10.1212/WNL.42.8.1481
    1. Li W.-Z., Li W.-P., Yao Y.-Y., Zhang W., Yin Y.-Y., Wu G.-C., et al. (2010). Glucocorticoids increase impairments in learning and memory due to elevated amyloid precursor protein expression and neuronal apoptosis in 12-month old mice. Eur. J. Pharmacol. 628, 108–115 10.1016/j.ejphar.2009.11.045
    1. Li Y., Liu L., Barger S. W., Griffin W. S. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611
    1. Li Y., Wang J., Sheng J. G., Liu L., Barger S. W., Jones R. A., et al. (1998). S100 beta increases levels of beta-amyloid precursor protein and its encoding mRNA in rat neuronal cultures. J. Neurochem. 71, 1421–1428 10.1046/j.1471-4159.1998.71041421.x
    1. Liao Y. F., Wang B. J., Cheng H. T., Kuo L. H., Wolfe M. S. (2004). Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J. Biol. Chem. 279, 49523–49532 10.1074/jbc.M402034200
    1. Liu B., Gao H. M., Wang J. Y., Jeohn G. H., Cooper C. L., Hong J. S. (2002). Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N.Y. Acad. Sci. 962, 318–331 10.1111/j.1749-6632.2002.tb04077.x
    1. Liu Y., Lee M. K., James M. M., Price D. L., Borchelt D. R., Troncoso J. C., et al. (2011). Passive (Amyloid-β Immunotherapy Attenuates Monoaminergic Axonal Degeneration in the Aβ PPswe/PS1dE9 Mice. J. Alzheimer's Dis. 23, 271–279
    1. Lue L. F., Rydel R., Brigham E. F., Yang L. B., Hampel H., Murphy G. M., Jr., et al. (2001). Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro. Glia 35, 72–79 10.1002/glia.1072
    1. Macpherson A., Dinkel K., Sapolsky R. (2005). Glucocorticoids worsen excitotoxin-induced expression of pro-inflammatory cytokines in hippocampal cultures. Exp. Neurol. 194, 376–383 10.1016/j.expneurol.2005.02.021
    1. Maier M., Peng Y., Jiang L., Seabrook T. J., Carroll M. C., Lemere C. A. (2008). Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J. Neurosci. 28, 6333–6341 10.1523/JNEUROSCI.0829-08.2008
    1. Man S. M., Ma Y. R., Shang D. S., Zhao W. D., Li B., Guo D. W., et al. (2007). Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer's disease. Neurobiol. Aging 28, 485–496 10.1016/j.neurobiolaging.2006.02.013
    1. Martin B., Szekely C., Brandt J., Piantadosi S., Breitner J., Craft S., et al. (2008). Cognitive function over time in the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol. 65, 896 10.1001/archneur.2008.65.7.nct70006
    1. Matousek S. B., Ghosh S., Shaftel S. S., Kyrkanides S., Olschowka J. A., O'Banion M. K. (2012). Chronic IL-1beta-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer's disease without inducing overt neurodegeneration. J. Neuroimmune Pharmacol. 7, 156–164 10.1007/s11481-011-9331-2
    1. McAlpine F. E., Lee J. K., Harms A. S., Ruhn K. A., Blurton-Jones M., Hong J., et al. (2009). Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis. 34, 163–177 10.1016/j.nbd.2009.01.006
    1. McGeer P. L., Akiyama H., Itagaki S., McGeer E. G. (1989). Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett. 107, 341–346 10.1016/0304-3940(89)90843-4
    1. McGeer P. L., Itagaki S., McGeer E. G. (1988). Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 76, 550–557 10.1007/BF00689592
    1. McGeer P. L., McGeer E. G. (1995). The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 21, 195–218 10.1016/0165-0173(95)00011-9
    1. Meda L., Baron P., Prat E., Scarpini E., Scarlato G., Cassatella M. A., et al. (1999). Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid[25-35]. J. Neuroimmunol. 93, 45–52 10.1016/S0165-5728(98)00188-X
    1. Medeiros R., Laferla F. M. (2013). Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp. Neurol. 239, 133–138 10.1016/j.expneurol.2012.10.007
    1. Montgomery S. L., Mastrangelo M. A., Habib D., Narrow W. C., Knowlden S. A., Wright T. W., et al. (2011). Ablation of TNF-RI/RII expression in Alzheimer's disease mice leads to an unexpected enhancement of pathology: implications for chronic pan-TNF-alpha suppressive therapeutic strategies in the brain. Am. J. Pathol. 179, 2053–2070 10.1016/j.ajpath.2011.07.001
    1. Moynagh P. N. (2005). The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J. Anat. 207, 265–269 10.1111/j.1469-7580.2005.00445.x
    1. Mrak R. E. (2012). Microglia in Alzheimer brain: a neuropathological perspective. Int. J. Alzheimers Dis. 2012, 165021 10.1155/2012/165021
    1. Mrak R. E., Griffin W. S. (2005). Potential inflammatory biomarkers in Alzheimer's disease. J. Alzheimers Dis. 8, 369–375
    1. Mrak R. E., Sheng J. G., Griffin W. S. (1996). Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer's disease. J. Neuropathol. Exp. Neurol. 55, 273–279 10.1097/00005072-199603000-00002
    1. Murrell J., Farlow M., Ghetti B., Benson M. D. (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99 10.1126/science.1925564
    1. Okun E., Mattson M. P., Arumugam T. V. (2010). Involvement of Fc receptors in disorders of the central nervous system. Neuromol. Med. 12, 164–178 10.1007/s12017-009-8099-5
    1. Orgogozo J.-M., Gilman S., Dartigues J.-F., Laurent B., Puel M., Kirby L., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Aβ 42 immunization. Neurology 61, 46–54 10.1212/01.WNL.0000073623.84147.A8
    1. Patel N. S., Paris D., Mathura V., Quadros A. N., Crawford F. C., Mullan M. J. (2005). Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. J. Neuroinflammation 2, 9 10.1186/1742-2094-2-9
    1. Pekkarinen P. T., Vaali K., Junnikkala S., Rossi L. H., Tuovinen H., Meri S., et al. (2011). A functional complement system is required for normal T helper cell differentiation. Immunobiology 216, 737–743 10.1016/j.imbio.2010.10.004
    1. Quintanilla R. A., Orellana D. I., Gonzalez-Billault C., Maccioni R. B. (2004). Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 295, 245–257 10.1016/j.yexcr.2004.01.002
    1. Ransohoff R. M., Glabinski A., Tani M. (1996). Chemokines in immune-mediated inflammation of the central nervous system. Cytokine Growth Factor Rev. 7, 35–46 10.1016/1359-6101(96)00003-2
    1. Rezai-Zadeh K., Gate D., Town T. (2009). CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J. Neuroimmune Pharmacol. 4, 462–475 10.1007/s11481-009-9166-2
    1. Ricklin D., Hajishengallis G., Yang K., Lambris J. D. (2010). Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 10.1038/ni.1923
    1. Ridnour L. A., Barasch K. M., Windhausen A. N., Dorsey T. H., Lizardo M. M., Yfantis H. G., et al. (2012). Nitric oxide synthase and breast cancer: role of TIMP-1 in NO-mediated Akt activation. PLoS ONE 7:e44081 10.1371/journal.pone.0044081
    1. Ringman J. M., O'Neill J., Geschwind D., Medina L., Apostolova L. G., Rodriguez Y., et al. (2007). Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain 130, 1767–1776 10.1093/brain/awm102
    1. Ringheim G. E., Szczepanik A. M., Petko W., Burgher K. L., Zhu S. Z., Chao C. C. (1998). Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Brain Res. Mol. Brain Res. 55, 35–44 10.1016/S0169-328X(97)00356-2
    1. Rogers J., Cooper N. R., Webster S., Schultz J., McGeer P. L., Styren S. D., et al. (1992). Complement activation by beta-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 89, 10016–10020 10.1073/pnas.89.21.10016
    1. Rossi F., Bianchini E. (1996). Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes. Biochem. Biophys. Res. Commun. 225, 474–478 10.1006/bbrc.1996.1197
    1. Roth A. D., Ramirez G., Alarcon R., Von Bernhardi R. (2005). Oligodendrocytes damage in Alzheimer's disease: beta amyloid toxicity and inflammation. Biol. Res. 38, 381–387 10.4067/S0716-97602005000400011
    1. Rozemuller J. M., Eikelenboom P., Stam F. C. (1986). Role of microglia in plaque formation in senile dementia of the Alzheimer type. An immunohistochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 51, 247–254 10.1007/BF02899034
    1. Rozkalne A., Spires-Jones T. L., Stern E. A., Hyman B. T. (2009). A single dose of passive immunotherapy has extended benefits on synapses and neurites in an Alzheimer's disease mouse model. Brain Res. 1280, 178–185 10.1016/j.brainres.2009.05.045
    1. Rubartelli A., Lotze M. T. (2007). Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 10.1016/j.it.2007.08.004
    1. Saez T. E., Pehar M., Vargas M., Barbeito L., Maccioni R. B. (2004). Astrocytic nitric oxide triggers tau hyperphosphorylation in hippocampal neurons. In Vivo 18, 275–280
    1. Salloway S., Sperling R., Gilman S., Fox N., Blennow K., Raskind M., et al. (2009). A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73, 2061–2070 10.1212/WNL.0b013e3181c67808
    1. Sastre M., Dewachter I., Rossner S., Bogdanovic N., Rosen E., Borghgraef P., et al. (2006). Nonsteroidal anti-inflammatory drugs repress -secretase gene promoter activity by the activation of PPAR. Proc. Natl. Acad. Sci. U.S.A. 103, 443–448
    1. Sheng J. G., Zhu S. G., Jones R. A., Griffin W. S., Mrak R. E. (2000). Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp. Neurol. 163, 388–391 10.1006/exnr.2000.7393
    1. Sisodia S. S., Kim S. H., Thinakaran G. (1999). Function and dysfunction of the presenilins. Am. J. Hum. Genet. 65, 7–12 10.1086/302475
    1. Smyth M. D., Cribbs D. H., Tenner A. J., Shankle W. R., Dick M., Kesslak J. P., et al. (1994). Decreased levels of C1q in cerebrospinal fluid of living Alzheimer patients correlate with disease state. Neurobiol. Aging 15, 609–614 10.1016/0197-4580(94)00055-7
    1. Sofroniew M. V., Vinters H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 10.1007/s00401-009-0619-8
    1. Spires-Jones T. L., Mielke M. L., Rozkalne A., Meyer-Luehmann M., De Calignon A., Bacskai B. J., et al. (2009). Passive immunotherapy rapidly increases structural plasticity in a mouse model of Alzheimer disease. Neurobiol. Dis. 33, 213–220 10.1016/j.nbd.2008.10.011
    1. Sterka D., Jr., Marriott I. (2006). Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. J. Neuroimmunol. 179, 65–75 10.1016/j.jneuroim.2006.06.009
    1. Sung S., Yang H., Uryu K., Lee E. B., Zhao L., Shineman D., et al. (2004). Modulation of nuclear factor-κ b activity by indomethacin influences aβ levels but not aβ precursor protein metabolism in a model of alzheimer's disease. Am. J. Pathol. 165, 2197–2206 10.1016/S0002-9440(10)63269-5
    1. Swaab D. F., Raadsheer F. C., Endert E., Hofman M. A., Kamphorst W., Ravid R. (1994). Increased cortisol levels in aging and Alzheimer's disease in postmortem cerebrospinal fluid. J. Neuroendocrinol. 6, 681–687 10.1111/j.1365-2826.1994.tb00635.x
    1. Szekely C. A., Green R. C., Breitner J. C. S., Ostbye T., Beiser A. S., Corrada M. M., et al. (2008). No advantage of “Aβ 42-lowering” NSAIDs for prevention of AD insix pooled cohort studies. Neurology 70, 2291–2298 10.1212/01.wnl.0000313933.17796.f6
    1. Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., et al. (2006). Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 281, 21362–21368 10.1074/jbc.M600504200
    1. Tan J., Town T., Paris D., Mori T., Suo Z., Crawford F., et al. (1999). Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286, 2352–2355 10.1126/science.286.5448.2352
    1. Tarkowski E., Issa R., Sjogren M., Wallin A., Blennow K., Tarkowski A., et al. (2002). Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging 23, 237–243 10.1016/S0197-4580(01)00285-8
    1. Tesseur I., Zou K., Esposito L., Bard F., Berber E., Can J. V., et al. (2006). Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J. Clin. Invest. 116, 3060–3069 10.1172/JCI27341
    1. Thal L. J., Ferris S. H., Kirby L., Block G. A., Lines C. R., Yuen E., et al. (2005). A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 30, 1204–1215 10.1038/sj.npp.1300690
    1. Torreilles F., Salman-Tabcheh S., Guerin M., Torreilles J. (1999). Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Brain Res. Rev. 30, 153–163 10.1016/S0165-0173(99)00014-4
    1. Town T., Nikolic V., Tan J. (2005). The microglial “activation” continuum: from innate to adaptive responses. J. Neuroinflammation 2, 24 10.1186/1742-2094-2-24
    1. Van Dam D., Coen K., De Deyn P. P. (2010). Ibuprofen modifies cognitive disease progression in an Alzheimer's mouse model. J. Psychopharmacol. 24, 383–388 10.1177/0269881108097630
    1. Vane J., Botting R. (1987). Inflammation and the mechanism of action of anti-inflammmatory drugs. FASEB J. 1, 89–96
    1. Vellas B., Black R., Thal L. J., Fox N. C., Daniels M., McLennan G., et al. (2009). Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res. 6, 144 10.2174/156720509787602852
    1. Wajant H., Pfizenmaier K., Scheurich P. (2003). Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 10.1038/sj.cdd.4401189
    1. Walker D. G., Kim S. U., McGeer P. L. (1995). Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J. Neurosci. Res. 40, 478–493 10.1002/jnr.490400407
    1. Walker D. G., Lue L. F. (2005). Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer's disease and other neurodegenerative diseases. J. Neurosci. Res. 81, 412–425 10.1002/jnr.20484
    1. Wallace M. N., Geddes J. G., Farquhar D. A., Masson M. R. (1997). Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Exp. Neurol. 144, 266–272 10.1006/exnr.1996.6373
    1. Webster S. D., Yang A. J., Margol L., Garzon-Rodriguez W., Glabe C. G., Tenner A. J. (2000). Complement component C1q modulates the phagocytosis of Abeta by microglia. Exp. Neurol. 161, 127–138 10.1006/exnr.1999.7260
    1. Wells T. N., Power C. A., Proudfoot A. E. (1998). Definition, function and pathophysiological significance of chemokine receptors. Trends Pharmacol. Sci. 19, 376–380 10.1016/S0165-6147(98)01247-4
    1. Westin K., Buchhave P., Nielsen H., Minthon L., Janciauskiene S., Hansson O. (2012). CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer's disease. PLoS ONE 7:e30525 10.1371/journal.pone.0030525
    1. Wiessner C., Wiederhold K. H., Tissot A. C., Frey P., Danner S., Jacobson L. H., et al. (2011). The second-generation active Abeta immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J. Neurosci. 31, 9323–9331 10.1523/JNEUROSCI.0293-11.2011
    1. Williams T. J. (1978). The role of prostaglandins in inflammation. Ann. R. Coll. Surg. Engl. 60, 198–201
    1. Wisniewski H. M., Barcikowska M., Kida E. (1991). Phagocytosis of beta/A4 amyloid fibrils of the neuritic neocortical plaques. Acta Neuropathol. 81, 588–590 10.1007/BF00310142
    1. Wyss-Coray T., Lin C., Yan F., Yu G. Q., Rohde M., McConlogue L., et al. (2001). TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat. Med. 7, 612–618 10.1038/87945
    1. Wyss-Coray T., Loike J. D., Brionne T. C., Lu E., Anankov R., Yan F., et al. (2003). Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9, 453–457 10.1038/nm838
    1. Wyss-Coray T., Masliah E., Mallory M., McConlogue L., Johnson-Wood K., Lin C., et al. (1997). Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease. Nature 389, 603–606 10.1038/39321
    1. Wyss-Coray T., Yan F., Lin A. H., Lambris J. D., Alexander J. J., Quigg R. J., et al. (2002). Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl. Acad. Sci. U.S.A. 99, 10837–10842 10.1073/pnas.162350199
    1. Xia M. Q., Qin S. X., Wu L. J., Mackay C. R., Hyman B. T. (1998). Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. Am. J. Pathol. 153, 31–37 10.1016/S0002-9440(10)65542-3
    1. Xiang Z., Ho L., Valdellon J., Borchelt D., Kelley K., Spielman L., et al. (2002a). Cyclooxygenase (COX)-2 and cell cycle activity in a transgenic mouse model of Alzheimer's disease neuropathology. Neurobiol. Aging 23, 327–334 10.1016/S0197-4580(01)00282-2
    1. Xiang Z., Ho L., Yemul S., Zhao Z., Qing W., Pompl P., et al. (2002b). Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr. 10, 271–278
    1. Yamagata K., Andreasson K. I., Kaufmann W. E., Barnes C. A., Worley P. F. (1993). Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11, 371–386 10.1016/0896-6273(93)90192-T
    1. Yamamoto M., Horiba M., Buescher J. L., Huang D., Gendelman H. E., Ransohoff R. M., et al. (2005). Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am. J. Pathol. 166, 1475–1485 10.1016/S0002-9440(10)62364-4
    1. Yamamoto M., Kiyota T., Horiba M., Buescher J. L., Walsh S. M., Gendelman H. E., et al. (2007). Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am. J. Pathol. 170, 680–692 10.2353/ajpath.2007.060378
    1. Yao Y.-Y., Liu D.-M., Xu D.-F., Li W.-P. (2007). Memory and learning impairment induced by dexamethasone in senescent but not young mice. Eur. J. Pharmacol. 574, 20–28 10.1016/j.ejphar.2007.07.021
    1. Yermakova A. V., Rollins J., Callahan L. M., Rogers J., O'Banion M. K. (1999). Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. J. Neuropathol. Exp. Neurol. 58, 1135–1146 10.1097/00005072-199911000-00003
    1. Yip A. G., Green R. C., Huyck M., Cupples L. A., Farrer L. A. (2005). Nonsteroidal anti-inflammatory drug use and Alzheimer's disease risk: the MIRAGE Study. BMC Geriatr. 5:2 10.1186/1471-2318-5-2
    1. Zilka N., Kazmerova Z., Jadhav S., Neradil P., Madari A., Obetkova D., et al. (2012). Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J. Neuroinflammation 9, 47 10.1186/1742-2094-9-47

Source: PubMed

3
Se inscrever