Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema

J E Gadek, G A Fells, R L Zimmerman, S I Rennard, R G Crystal, J E Gadek, G A Fells, R L Zimmerman, S I Rennard, R G Crystal

Abstract

The current concepts of the pathogenesis of emphysema hold that progressive, chronic destruction of the alveolar structures occurs because there was in imbalance between the proteases and antiproteases in the lower respiratory tract. In this context, proteases, particularly neutrophil elastase, work unimpeded to destroy the alveolar structures. This concept has evolved from consideration of patients with alpha 1-antitrypsin deficiency, who have decreased levels of serum alpha 1-antitrypsin and who have progressive panacinar emphysema. To directly assess the antiprotease side of this equation, the lower respiratory tract of non-smoking individuals with normal serum antiproteases and individuals with PiZ homozygous alpha 1-antitrypsin deficiency underwent bronchoalveolar lavage to evaluate the antiprotease screen of their lower respiratory tract. These studies demonstrated that: (a) alpha 1-antitrypsin is the major antielastase of the normal human lower respiratory tract; (b) alpha 2-macroglobulin, a large serum antielastase, and the bronchial mucous inhibitor, an antielastase of the central airways, do not contribute to the antielastase protection of the human alveolar structures; (c) individuals with PiZ alpha 1-antitrypsin deficiency have little or no alpha 1-antitrypsin in their lower respiratory tract and have no alternative antiprotease protection against neutrophil elastase; and (d) the lack of antiprotease protection of the lower respiratory tract of PiZ individuals is a chronic process, suggesting their vulnerability to neutrophil elastase is always present.

References

    1. Immunochemistry. 1965 Sep;2(3):235-54
    1. Scand J Clin Lab Invest. 1971 Nov;28(3):251-3
    1. Biochim Biophys Acta. 1973 Nov 15;327(1):138-45
    1. Am Rev Respir Dis. 1974 Aug;110(2):176-94
    1. Am J Clin Pathol. 1974 Dec;62(6):732-9
    1. Arch Biochem Biophys. 1975 Jul;169(1):91-101
    1. Chest. 1976 Jul;70(1):62-7
    1. Scand J Clin Lab Invest. 1976 Sep;36(5):437-45
    1. N Engl J Med. 1976 Dec 23;295(26):1444-8
    1. Ann Intern Med. 1976 Dec;85(6):769-88
    1. Methods Enzymol. 1976;45:869-74
    1. Am Rev Respir Dis. 1977 Mar;115(3):461-78
    1. Hoppe Seylers Z Physiol Chem. 1977 May;358(5):583-9
    1. Am Rev Respir Dis. 1977 Sep;116(3):469-75
    1. Acta Otolaryngol. 1978 Mar-Apr;85(3-4):282-9
    1. Am Rev Respir Dis. 1978 Jun;117(6):1109-33
    1. N Engl J Med. 1978 Nov 9;299(19):1045-8
    1. Anal Biochem. 1978 Aug 15;89(1):274-8
    1. Acta Med Scand. 1978;204(5):345-51
    1. J Clin Invest. 1979 Apr;63(4):793-7
    1. J Clin Invest. 1979 Jul;64(1):280-6
    1. Am Rev Respir Dis. 1979 Jun;119(6):953-60
    1. N Engl J Med. 1979 Oct 4;301(14):737-42
    1. Am J Pathol. 1979 Oct;97(1):111-36
    1. Am J Pathol. 1979 Oct;97(1):149-206
    1. Am Rev Respir Dis. 1979 Oct;120(4):723-7
    1. Am Rev Respir Dis. 1979 Nov;120(5):1081-6
    1. Science. 1979 Dec 14;206(4424):1315-6
    1. Chest. 1980 Feb;77(2 Suppl):273
    1. Anal Biochem. 1980 May 1;104(1):205-14
    1. J Clin Invest. 1980 Jul;66(1):82-87
    1. Anal Biochem. 1965 Feb;10:358-61

Source: PubMed

3
Se inscrever