Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: randomized controlled trial

Alicia Cuesta-Gómez, Patricia Sánchez-Herrera-Baeza, Edwin Daniel Oña-Simbaña, Alicia Martínez-Medina, Carmen Ortiz-Comino, Carlos Balaguer-Bernaldo-de-Quirós, Alberto Jardón-Huete, Roberto Cano-de-la-Cuerda, Alicia Cuesta-Gómez, Patricia Sánchez-Herrera-Baeza, Edwin Daniel Oña-Simbaña, Alicia Martínez-Medina, Carmen Ortiz-Comino, Carlos Balaguer-Bernaldo-de-Quirós, Alberto Jardón-Huete, Roberto Cano-de-la-Cuerda

Abstract

Background: Dexterity and activities of daily living limitations on the upper limb (UL) represent one of the most common problems in patients with multiple sclerosis (MS). The aim of this study was to evaluate the effectiveness of the specially developed Serious Games that make use of the Leap Motion Controller (LMC) as main user interface for improving UL grip muscle strength, dexterity, fatigue, quality of life, satisfaction and compliance.

Methods: A single-blinded randomized controlled trial was conducted. The sample was randomized into two groups: an experimental group who received treatment based on serious games designed by the research team using the developed LMC based Serious Games for the UL plus conventional rehabilitation, and a control group who received the same conventional rehabilitation for the UL. Both groups received two 60 min sessions per week over a ten-week period. Grip muscle strength, coordination, speed of movements, fine and gross UL dexterity, fatigue, quality of life, satisfaction and compliance were assessed in both groups pre-treatment, post-treatment and in a follow-up period of 1 month without receiving any treatment.

Results: In the experimental group compared to the control group, significant improvements were observed in the post-treatment assessment for coordination, speed of movements, fine and gross UL dexterity. Also, significant results were found in the follow-up in coordination, speed of movements, fine and gross for the more affected side.

Conclusions: An experimental protocol using an LMC based Serious Games designed for UL rehabilitation showed improvements for unilateral gross manual dexterity, fine manual dexterity, and coordination in MS patients with high satisfaction and excellent compliance.

Trial registration: This randomized controlled trial has been registered at ClinicalTrials.gov Identifier: NCT04171908 , Nov 2019.

Keywords: Dexterity; Leap motion controller; Multiple sclerosis; Rehabilitation; Serious games; Upper limb; Virtual reality.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Set of video games designed for the Leap Motion® System used in this protocol. Screen translation: Please adjust the distance and thickness of the keys and the height of the hands as you want, using the corresponding bars. Height, distance and thickness of the keys
Fig. 2
Fig. 2
a Piano Game. Screen translation: Piano: both hands. b Reach Game. Screen translation: Reach: right hand. c Grab Game. Screen translation: Grab: right hand. You caught it! without opening your hand, transport the cube to the red point. d Pinch Game. Screen translation: Pinch: right hand. e. Flip Game. Screen translation: Flip: both hands. Please place your hand in the corresponding blue table position

References

    1. WHO, Multiple Sclerosis International Federation . Atlas: Multiple Sclerosis Resources in the World. Geneva: World Health Organization; 2008.
    1. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–127. doi: 10.1002/ana.1032.
    1. Jonsdottir J, Perini G, Ascolese A, Bowman T, Montesano A, Lawo M, et al. Unilateral arm rehabilitation for persons with multiple sclerosis using serious games in a virtual reality approach: bilateral treatment effect? Mult Scler Relat Disord. 2019;35:76–82. doi: 10.1016/j.msard.2019.07.010.
    1. Kamm CP, Heldner MR, Vanbellingen T, Mattle HP, Müri R, Bohlhalter S. Limb apraxia in multiple sclerosis: prevalence and impact on manual dexterity and activities of daily living. Arch Phys Med Rehabil. 2012;93(6):1081–1085. doi: 10.1016/j.apmr.2012.01.008.
    1. Choi Y, Song C, Chun B. Activities of daily living and manual hand dexterity in persons with idiopathic Parkinson disease. J Phys Ther Sci. 2017;29(3):457–460. doi: 10.1589/jpts.29.457.
    1. Waliño-Paniagua CN, Gómez-Calero C, Jiménez-Trujillo MI, Aguirre-Tejedor L, Bermejo-Franco A, Ortiz-Gutiérrez RM, Cano-de-la-Cuerda R. Effects of a game-based virtual reality video capture training program plus occupational therapy on manual dexterity in patients with multiple sclerosis: a randomized controlled trial. J Healthc Eng. 2019;2019:9780587. doi: 10.1155/2019/9780587.
    1. Fernández-González P, Carratalá-Tejada M, Monge-Pereira E, Collado-Vázquez S, Sánchez-Herrera Baeza P, Cuesta-Gómez A, Oña-Simbaña ED, Jardón-Huete A, Molina-Rueda F, Balaguer-Bernaldo de Quirós C, Miangolarra-Page JC, Cano-de la Cuerda R. Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson's disease: a feasibility study. J Neuroeng Rehabil. 2019;16(1):133. doi: 10.1186/s12984-019-0593-x.
    1. Knippenberg E, Verbrugghe J, Lamers I, Palmaers S, Timmermans A, Spooren A. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy. J Neuroeng Rehabil. 2017;14:61. doi: 10.1186/s12984-017-0270-x.
    1. Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Albiol-Pérez S, Palacios-Navarro G, Fardoun HM, et al. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games. 2014;2(2):e12. doi: 10.2196/games.2933.
    1. Lamers I, Maris A, Severijns D, Dielkens W, Geurts S, Van Wijmeersch B, Feys P. Upper limb rehabilitation in people with multiple sclerosis: a systematic review. Neurorehabil Neural Repair. 2016;30(8):773–793. doi: 10.1177/1545968315624785.
    1. Haselkorn JK, Hughes C, Rae-Grant A, Henson LJ, Bever CT, Lo AC, Brown TR, Kraft GH, Getchius T, Gronseth G, Armstrong MJ, Narayanaswami P. Summary of comprehensive systematic review: rehabilitation in multiple sclerosis: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology. Neurology. 2015;85(21):1896–1903. doi: 10.1212/WNL.0000000000002146.
    1. Villafañe JH, Valdes K, Buraschi R, Martinelli M, Bissolotti L, Negrini S. Reliability of the handgrip strength test in elderly subjects with Parkinson disease. Hand (N Y) 2016;11(1):54–58. doi: 10.1177/1558944715614852.
    1. Dewosiers J, Bravo G, Hibert R, Dutil K, Mercier L. Validation of the box and block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994;75:751–755. doi: 10.1016/0003-9993(94)90130-9.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. American J Occupat Therap. 1985;39:386–391. doi: 10.5014/ajot.39.6.386.
    1. Costa LD, Vaughan HG, Jr, Levita E, Farber N. Purdue pegboard as a predictor of the presence and laterality of cerebral lesions. J Consult Psychol. 1963;27:133–137. doi: 10.1037/h0040737.
    1. Agnew J, Bolla-Wilson K, Kawas CH, Bleecker ML. Purdue pegboard age and sex norms for people 40 years old and older. Dev Neuropsychol. 1988;4:29–35. doi: 10.1080/87565648809540388.
    1. Goodkin DE, Hertsgaard D, Seminary J. Upper extremity function in multiple sclerosis: improving assessment sensitivity with box-and-block and nine-hole peg tests. Arch Phys Med Rehabil. 1988;69(10):850–854.
    1. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–1123. doi: 10.1001/archneur.1989.00520460115022.
    1. Hobart J, Lamping D, Fitzpatrick R, Riazi A, Thompson A. The multiple sclerosis impact scale (MSIS-29): a new patient-based outcome measure. Brain. 2001;124(Pt 5):962–973. doi: 10.1093/brain/124.5.962.
    1. Gray O, McDonnell G, Hawkins S. Tried and tested: the psychometric properties of the multiple sclerosis impact scale (MSIS-29) in a population-based study. Mult Scler. 2009;15(1):75–80. doi: 10.1177/1352458508096872.
    1. Rodríguez-Blázquez C, Forjaz MJ, Martínez-Martín P. Calidad de vida relacionada con la salud en neurología: instrumentos de evaluación. In: Cano-de la Cuerda R, Collado Vázquez S, editors. Neurorrehabilitación: métodos específicos de valoración y tratamiento Madrid: Editorial Médica Panamericana. 2012. pp. 41–50.
    1. Roberts RE, Atrkisson CC, Mendias RM. Assessing the client satisfaction questionnaire in English and Spanish. Hisp J Behav Sci. 1984;6(4):385–396. doi: 10.1177/07399863840064004.
    1. Larsen DL, Attkisson CC, Hargreaves WA, LeVois M, Nguyen TD, Roberts RE, Ster B. Assessment of client / patient satisfaction: development of a general scale. Eval Program Plann. 1979;2:197–207. doi: 10.1016/0149-7189(79)90094-6.
    1. Palacios-Ceña D, Ortiz-Gutierrez RM, Buesa-Estellez A, Galán-Del-Río F, Cachon Perez JM, Martínez-Piedrola R, Velarde-Garcia JF, Cano-DE-LA-Cuerda R. Multiple sclerosis patients' experiences in relation to the impact of the kinect virtual home-exercise programme: a qualitative study. Eur J Phys Rehabil Med. 2016;52(3):347–355.
    1. Jonsdottir J, Bertoni R, Lawo M, Montesano A, Bowman T, Gabrielli S. Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlledpilot study. Mult Scler Relat Disord. 2018;19:25–29. doi: 10.1016/j.msard.2017.10.010.
    1. Webster A, Poyade M, Rea P, Paul L. The co-design of hand rehabilitation exercises for multiple sclerosis using hand tracking system. Adv Exp Med Biol. 2019;1120:83–96. doi: 10.1007/978-3-030-06070-1_7.
    1. Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, et al. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil. 2015;22(4):306–316. doi: 10.1179/1074935714Z.0000000036.
    1. Vanbellingen T, Filius SJ, Nyffeler T, van Wegen EEH. Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: a pilot study. Front Neurol. 2017;8(8):654. doi: 10.3389/fneur.2017.00654.
    1. Wang ZR, Wang P, Xing L, Mei LP, Zhao J, Zhang T. Leap motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural Regen Res. 2017;12(11):1823–1831. doi: 10.4103/1673-5374.219043.
    1. de Freitas BL, da Silva TD, Crocetta TB, Massetti T, de Araújo LV, Coe S, et al. Analysis of different device interactions in a virtual reality task in individuals with Duchenne muscular dystrophy-a randomized controlled trial. Front Neurol. 2019;10:24. doi: 10.3389/fneur.2019.00024.
    1. Brusque T, Vieira L, Guarnieri R, Massetti T, Borba F, de Abreu L, et al. Virtual reality software package for implementing motor learning and rehabilitation experiments. Virtual Reality. 2018;22(3):199–209. doi: 10.1007/s10055-017-0323-2.
    1. Oña ED, Balaguer C, Cano-de la Cuerda R, Collado-Vázquez S, Jardón A. Effectiveness of Serious Games for Leap Motion on the Functionality of the Upper Limb in Parkinson's Disease: A Feasibility Study. Comput Intell Neurosci. 2018;2018:7148427. doi: 10.1155/2018/7148427.
    1. Peters DM, McPherson AK, Fletcher B, McClenaghan BA, Fritz SL. Counting repetitions: an observational study of video game play in people with chronic poststroke hemiparesis. J Neurol Phys. 2013;37:105–111. doi: 10.1097/NPT.0b013e31829ee9bc.

Source: PubMed

3
Se inscrever