Mass treatment with azithromycin for trachoma: when is one round enough? Results from the PRET Trial in the Gambia

Emma M Harding-Esch, Ansumana Sillah, Tansy Edwards, Sarah E Burr, John D Hart, Hassan Joof, Mass Laye, Pateh Makalo, Ahmed Manjang, Sandra Molina, Isatou Sarr-Sissoho, Thomas C Quinn, Tom Lietman, Martin J Holland, David Mabey, Sheila K West, Robin Bailey, Partnership for Rapid Elimination of Trachoma (PRET) study group, Douglas Jabs, Maureen Maguire, Grace Saguti, Antoinette Darville, William Mabey, Joe St Clair, Neil Stone, Shivonne Prasad, Zenobe Reade, Reiko Miyahara, Patricia Tabernero, Josephine Exley, Josephine Hough, Kensuke Takaoka, Sarah Bailey, Robyn Damary-Homan, Jane MacDonald Whitton, Anita Carolle Wadagni, Ousman Ceesay, Lamin Leigh, Sarjo Dibba, Tumani Kuyateh, Omar Manneh, Omar Camara, Maxine Haffner, Rumana Hydara, Muhamed Jallow, Ma Bintou Jatta, Ousman Jallow, Sirrah Badgie, Adama Humma, Badinding Sawaneh, Omar Sey, Alhagie Saine, Omar Sarr, Mariama Jaiteh, Malick Ceesay, Sohna Badgie, Malick Colley Ismaila Tamba, Fatou Juwara Fanding Camara Modou Lamin Njie, Morro Yarbo, Mamut Camara, Rohie Kah, Yaya Damballeh, Alhagie Jammeh, Kaddy Camara, Mustafa Badjie, Wandifa Ceesay, Sandra Molina, Susan Sheedy, Edrisa Korita, Pierre Gomez, Dawda Joof, Kaddy Conteh, Luis Vaz, Mireia Jofre-Bonet, Emma M Harding-Esch, Ansumana Sillah, Tansy Edwards, Sarah E Burr, John D Hart, Hassan Joof, Mass Laye, Pateh Makalo, Ahmed Manjang, Sandra Molina, Isatou Sarr-Sissoho, Thomas C Quinn, Tom Lietman, Martin J Holland, David Mabey, Sheila K West, Robin Bailey, Partnership for Rapid Elimination of Trachoma (PRET) study group, Douglas Jabs, Maureen Maguire, Grace Saguti, Antoinette Darville, William Mabey, Joe St Clair, Neil Stone, Shivonne Prasad, Zenobe Reade, Reiko Miyahara, Patricia Tabernero, Josephine Exley, Josephine Hough, Kensuke Takaoka, Sarah Bailey, Robyn Damary-Homan, Jane MacDonald Whitton, Anita Carolle Wadagni, Ousman Ceesay, Lamin Leigh, Sarjo Dibba, Tumani Kuyateh, Omar Manneh, Omar Camara, Maxine Haffner, Rumana Hydara, Muhamed Jallow, Ma Bintou Jatta, Ousman Jallow, Sirrah Badgie, Adama Humma, Badinding Sawaneh, Omar Sey, Alhagie Saine, Omar Sarr, Mariama Jaiteh, Malick Ceesay, Sohna Badgie, Malick Colley Ismaila Tamba, Fatou Juwara Fanding Camara Modou Lamin Njie, Morro Yarbo, Mamut Camara, Rohie Kah, Yaya Damballeh, Alhagie Jammeh, Kaddy Camara, Mustafa Badjie, Wandifa Ceesay, Sandra Molina, Susan Sheedy, Edrisa Korita, Pierre Gomez, Dawda Joof, Kaddy Conteh, Luis Vaz, Mireia Jofre-Bonet

Abstract

Background: The World Health Organization has recommended three rounds of mass drug administration (MDA) with antibiotics in districts where the prevalence of follicular trachoma (TF) is ≥10% in children aged 1-9 years, with treatment coverage of at least 80%. For districts at 5-10% TF prevalence it was recommended that TF be assessed in 1-9 year olds in each community within the district, with three rounds of MDA provided to any community where TF≥10%. Worldwide, over 40 million people live in districts whose TF prevalence is estimated to be between 5 and 10%. The best way to treat these districts, and the optimum role of testing for infection in deciding whether to initiate or discontinue MDA, are unknown.

Methods: In a community randomized trial with a factorial design, we randomly assigned 48 communities in four Gambian districts, in which the prevalence of trachoma was known or suspected to be above 10%, to receive annual mass treatment with expected coverage of 80-89% ("Standard"), or to receive an additional visit in an attempt to achieve coverage of 90% or more ("Enhanced"). The same 48 communities were randomised to receive mass treatment annually for three years ("3×"), or to have treatment discontinued if Chlamydia trachomatis (Ct) infection was not detected in a sample of children in the community after mass treatment (stopping rule("SR")). Primary outcomes were the prevalence of TF and of Ct infection in 0-5 year olds at 36 months.

Results: The baseline prevalence of TF and of Ct infection in the target communities was 6.5% and 0.8% respectively. At 36 months the prevalence of TF was 2.8%, and that of Ct infection was 0.5%. No differences were found between the arms in TF or Ct infection prevalence either at baseline (Standard-3×: TF 5.6%, Ct 0.7%; Standard-SR: TF 6.1%, Ct 0.2%; Enhanced-3×: TF 7.4%, Ct 0.9%; and Enhanced-SR: TF 6.2%, Ct 1.2%); or at 36 months (Standard-3×: TF 2.3%, Ct 1.0%; Standard-SR TF 2.5%, Ct 0.2%; Enhanced-3× TF 3.0%, Ct 0.2%; and Enhanced-SR TF 3.2%, Ct 0.7% ). The implementation of the stopping rule led to treatment stopping after one round of MDA in all communities in both SR arms. Mean treatment coverage of children aged 0-9 in communities randomised to standard treatment was 87.7% at baseline and 84.8% and 88.8% at one and two years, respectively. Mean coverage of children in communities randomized to enhanced treatment was 90.0% at baseline and 94.2% and 93.8% at one and two years, respectively. There was no evidence of any difference in TF or Ct prevalence at 36 months resulting from enhanced coverage or from one round of MDA compared to three.

Conclusions: The Gambia is close to the elimination target for active trachoma. In districts prioritised for three MDA rounds, one round of MDA reduced active trachoma to low levels and Ct infection was not detectable in any community. There was no additional benefit to giving two further rounds of MDA. Programmes could save scarce resources by determining when to initiate or to discontinue MDA based on testing for Ct infection, and one round of MDA may be all that is necessary in some settings to reduce TF below the elimination threshold.

Trial registration: ClinicalTrials.gov NCT00792922.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Flow of EAs and participants…
Figure 1. Flow of EAs and participants through the study.
Figure 2. Location of PRET study districts…
Figure 2. Location of PRET study districts within The Gambia.
Figure 3. Treatment coverage in 0–9 s…
Figure 3. Treatment coverage in 0–9 s according to allocation and time point.
Figure 4. Cluster summarized mean percentage prevalence…
Figure 4. Cluster summarized mean percentage prevalence of TF by study arm (blue: standard 3×, red: , enhanced 3×, green: standard SR, yellow: enhanced SR and by individual EA within study arm(grey lines) at each time point.
Figure 5. Cluster summarized mean percentage prevalence…
Figure 5. Cluster summarized mean percentage prevalence of Ct infection by study arm (blue: standard, 3× red: enhanced,3× green: standard, SR yellow: enhanced SR and by individual EA within study arm(grey lines) at each time point.
Figure 6. Geographical clustering of households containing…
Figure 6. Geographical clustering of households containing infection at 36 month time point.

References

    1. Pascolini D, Mariotti SP (2011) Global estimates of visual impairment: 2010. Br J Ophthalmol 65: 614–8.
    1. WHO (2012) Global WHO Alliance for the Elimination of Blinding Trachoma by 2020 Progress report on eliminationof trachoma, 2010. Weekly Epidemiological Record 87: 161–168.
    1. WHO (1998) World Health Assembly Resolution 51.11. Geneva: WHO.
    1. WHO (2006) Trachoma control - a guide for programme managers. Geneva, Switzerland: World Health Organization.
    1. ITI (2012) ITI- Fighting Blinding Trachoma .
    1. Dolin PJ, Faal H, Johnson GJ, Ajewole J, Mohamed AA, et al. (1998) Trachoma in The Gambia. Br J Ophthalmol 82: 930–933.
    1. Harding-Esch EM, Edwards T, Sillah A, Sarr I, Roberts CH, et al. (2009) Active trachoma and ocular Chlamydia trachomatis infection in two Gambian regions: on course for elimination by 2020? PLoS Negl Trop Dis 3: e573.
    1. Sillah A (2006) The Department of State for Health and Social Welfare, The Gambian National Plan for Trachoma Control with Azithromycin.
    1. Baral K, Osaki S, Shreshta B, Panta CR, Boulter A, et al. (1999) Reliability of clinical diagnosis in identifying infectious trachoma in a low-prevalence area of Nepal. Bull World Health Organ 77: 461–466.
    1. Holm SO, Jha HC, Bhatta RC, Chaudhary JS, Thapa BB, et al. (2001) Comparison of two azithromycin distribution strategies for controlling trachoma in Nepal. Bull World Health Organ 79: 194–200.
    1. Burton MJ, Holland MJ, Faal N, Aryee EA, Alexander ND, et al. (2003) Which members of a community need antibiotics to control trachoma? Conjunctival Chlamydia trachomatis infection load in Gambian villages. Invest Ophthalmol Vis Sci 44: 4215–4222.
    1. Miller K, Schmidt G, Melese M, Alemayehu W, Yi E, et al. (2004) How reliable is the clinical exam in detecting ocular chlamydial infection? Ophthalmic Epidemiol 11: 255–262.
    1. Solomon AW, Harding-Esch E, Alexander ND, Aguirre A, Holland MJ, et al. (2008) Two doses of azithromycin to eliminate trachoma in a Tanzanian community. N Engl J Med 358: 1870–1871.
    1. Harding-Esch EM, Edwards T, Sillah A, Sarr-Sissoho I, Aryee EA, et al. (2008) Risk factors for active trachoma in The Gambia. Trans R Soc Trop Med Hyg 102: 1255–1262.
    1. Ngondi J, Gebre T, Shargie EB, Adamu L, Ejigsemahu Y, et al. (2009) Evaluation of three years of the SAFE strategy (Surgery, Antibiotics, Facial cleanliness and Environmental improvement) for trachoma control in five districts of Ethiopia hyperendemic for trachoma. Trans R Soc Trop Med Hyg 103: 1001–1010.
    1. Burton MJ, Holland MJ, Makalo P, Aryee EA, Sillah A, et al. (2010) Profound and sustained reduction in Chlamydia trachomatis in The Gambia: a five-year longitudinal study of trachoma endemic communities. PLoS Negl Trop Dis 4: e835 doi:
    1. Solomon AW, Holland MJ, Alexander ND, Massae PA, Aguirre A, et al. (2004) Mass treatment with single-dose azithromycin for trachoma. N Engl J Med 351: 1962–1971.
    1. Stare D, Harding-Esch E, Munoz B, Bailey R, Mabey D, et al. (2011) Design and Baseline Data of a Randomized Trial to Evaluate Coverage and Frequency of Mass Treatment with Azithromycin: The Partnership for Rapid Elimination of Trachoma (PRET) in Tanzania and The Gambia. Ophthalmic Epidemiol 18: 20–29.
    1. Harding-Esch E, Edwards T, Mkocha H, Munoz B, Holland M, et al. (2010) Trachoma Prevalence and Associated Risk Factors in The Gambia and Tanzania: Baseline Results of a Cluster Randomised Controlled Trial. PLoS Negl Trop Dis 4: e861.
    1. Thylefors B, Dawson CR, Jones BR, West SK, Taylor HR (1987) A simple system for the assessment of trachoma and its complications. Bull World Health Organ 65: 477–483.
    1. Solomon AW, Holland MJ, Burton MJ, West SK, Alexander ND, et al. (2003) Strategies for control of trachoma: observational study with quantitative PCR. Lancet 362: 198–204.
    1. Moran PAP (1950) Notes on Continuous Stochastic Phenomena. Biometrika 37 1: 17–23.
    1. Ekwaru JP, Walter SD (2001) An Approximation for the Rank Adjacency Statistic for Spatial Clustering with Sparse Data. Geographical Analysis 33: 19–28.
    1. Zhaoxia Z. Personal communication.
    1. West S. Personal communication.
    1. Burton MJ, Hu VH, Massae P, Burr SE, Chevallier C, et al. (2011) What is causing active trachoma? The role of nonchlamydial bacterial pathogens in a low prevalence setting. Invest Ophthalmol Vis Sci 52: 6012–6017.
    1. Burton MJ, Holland MJ, Makalo P, Aryee EA, Alexander ND, et al. (2005) Re-emergence of Chlamydia trachomatis infection after mass antibiotic treatment of a trachoma-endemic Gambian community: a longitudinal study. Lancet 365: 1321–1328.
    1. Antal GM, Lukehart SA, Meheus AZ (2002) The endemic treponematoses. Microbes Infect 4: 83–94.
    1. Harding-Esch EM, Holland MJ, Schemann JF, Molina S, Sarr I, et al. (2011) Diagnostic accuracy of a prototype point-of-care test for ocular Chlamydia trachomatis under field conditions in The Gambia and Senegal. PLoS Negl Trop Dis 5: e1234.
    1. Michel CE, Solomon AW, Magbanua JP, Massae PA, Huang L, et al. (2006) Field evaluation of a rapid point-of-care assay for targeting antibiotic treatment for trachoma control: a comparative study. Lancet 367: 1585–1590.
    1. Hsiang MS, Hwang J, Kunene S, Drakeley C, Kandula D, et al. (2012) Surveillance for malaria elimination in swaziland: a national cross-sectional study using pooled PCR and serology. PLoS ONE 7: e29550.
    1. Lakew T, alemayehu W, Melese M, Yi E, House J, et al. (2009) Importance of Coverage and Endemicity on the Return of Infectious Trachoma after a Single Mass Antibiotic Distribution. PLoS Negl Trop Dis 3: e507.
    1. West SK, Munoz B, Mkocha H, Holland MJ, Aguirre A, et al. (2005) Infection with Chlamydia trachomatis after mass treatment of a trachoma hyperendemic community in Tanzania: a longitudinal study. Lancet 366: 1296–1300.
    1. Ssemanda EN, Munoz B, Harding-Esch EM, Edwards T, Mkocha H, et al. (2010) Mass treatment with azithromycin for trachoma control: participation clusters in households. PLoS Negl Trop Dis 4: e838.
    1. (2012) The Trachoma Atlas. Available: Accessed 9/3/2012.
    1. Smith JL, Haddad D, Polack S, Harding-Esch EM, Hooper PJ, et al. (2011) Mapping the global distribution of trachoma: why an updated atlas is needed. PLoS Negl Trop Dis 5: e973.

Source: PubMed

3
Se inscrever