The easiest children to reach are most likely to be infected with ocular Chlamydia trachomatis in trachoma endemic areas of Niger

Abdou Amza, Boubacar Kadri, Baido Nassirou, Sun N Yu, Nicole E Stoller, Satasuk J Bhosai, Zhaoxia Zhou, Charles E McCulloch, Sheila K West, Robin L Bailey, Jeremy D Keenan, Thomas M Lietman, Bruce D Gaynor, Abdou Amza, Boubacar Kadri, Baido Nassirou, Sun N Yu, Nicole E Stoller, Satasuk J Bhosai, Zhaoxia Zhou, Charles E McCulloch, Sheila K West, Robin L Bailey, Jeremy D Keenan, Thomas M Lietman, Bruce D Gaynor

Abstract

Background: Control programs for trachoma use mass antibiotic distributions to treat ocular Chlamydia trachomatis in an effort to eliminate this disease worldwide. To determine whether children infected with ocular Chlamydia are more likely to present later for examination than those who are uninfected, we compare the order of presentation for examination of children 0-5 years, and the presence of ocular Chlamydia by PCR in 4 villages in Niger where trachoma is endemic.

Methods: We conducted a cluster-randomized, controlled trial where 48 randomly selected villages in Niger are divided into 4 study arms of different mass treatment strategies. In a substudy of the main trial, we randomly selected 1 village from each of the 4 study arms (4 total villages) and we evaluated the odds of ocular Chlamydia versus the rank order of presentation for examination and laboratory assessment before treatment was offered.

Findings: We found the odds of harboring ocular Chlamydia dropped by more than 70% from the first child examined to the last child examined (OR 0.27, 95% CI 0.13-0.59, P = 0.001) in the 4 randomly selected villages. We found the odds of active trachoma dropped by 80% from the first child examined to the last child examined (OR 0.20, 95% CI 0.10-0.4, P<0.0001) in the 48 villages in the main trial.

Interpretation: This study demonstrates that even if the WHO recommended 80% treatment coverage is not reached in certain settings, children 0-5 years with the greatest probability of ocular Chlamydia have higher odds of receiving attention because they are the first to present. These results suggest there may be diminishing returns when using scarce resources to track down the last few children in a mass treatment program.

Trial registration: ClinicalTrials.gov NCT00792922.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Consort flow diagram for cluster…
Figure 1. Consort flow diagram for cluster randomized trial.
Figure 2. Rank of presentation (normalized) versus…
Figure 2. Rank of presentation (normalized) versus cumulative ocular Chlamydia PCR positivity aggregated in 4 villages in Niger.
Infected individuals presenting earlier are displayed above y = x line.
Figure 3. Probability of C. trachomatis infection…
Figure 3. Probability of C. trachomatis infection by quartile of normalized rank order of presentation in 4 villages in Niger.

References

    1. Report of the Eighth Meeting of the W.H.O. Alliance for the Global Elimination of Blinding Trachoma (2004). Geneva, Switzerland: World Health Organization. WHO/PBD/GET/04.2 WHO/PBD/GET/04.2.
    1. Ssemanda EN, Levens J, Mkocha H, Munoz B, West SK (2012) Azithromycin mass treatment for trachoma control: risk factors for non-participation of children in two treatment rounds. PLoS Negl Trop Dis 6: e1576.
    1. Stare D, Harding-Esch E, Munoz B, Bailey R, Mabey D, et al. (2011) Design and baseline data of a randomized trial to evaluate coverage and frequency of mass treatment with azithromycin: the Partnership for Rapid Elimination of Trachoma (PRET) in Tanzania and The Gambia. Ophthalmic Epidemiology 18: 20–29.
    1. Report of the Second Meeting of the W.H.O. Alliance for the Global Elimination of Trachoma. Geneva: World Health Organization (1998). WHO/PBLGET/98.2 English. WHO/PBLGET/98.2 English. pp 21–22.
    1. Amza A, Kadri B, Nassirou B, Stoller NE, Yu SN, et al. (2012) Community Risk Factors for Ocular Chlamydia Infection in Niger: Pre-Treatment Results from a Cluster-Randomized Trachoma Trial. PLoS Negl Trop Dis 6: e1586.
    1. Thylefors B, Dawson CR, Jones BR, West SK, Taylor HR (1987) A simple system for the assessment of trachoma and its complications. Bulletin of the World Health Organization 65: 477–483.
    1. Gaydos CA, Crotchfelt KA, Shah N, Tennant M, Quinn TC, et al. (2002) Evaluation of dry and wet transported intravaginal swabs in detection of Chlamydia trachomatis and Neisseria gonorrhoeae infections in female soldiers by PCR. Journal of Clinical Microbiology 40: 758–761.
    1. Diamont J, Moncada J, Pang F, Jha H, Benes R, et al. (2001) Pooling of Chlamydial Laboratory Tests to Determine Prevalence of Trachoma. Ophthalmic Epidemiology 8: 109–117.
    1. Gebre T, Ayele B, Zerihun M, Genet A, Stoller NE, et al. (2012) Comparison of annual versus twice-yearly mass azithromycin treatment for hyperendemic trachoma in Ethiopia: a cluster-randomised trial. Lancet 379: 143–151.
    1. Wright HR, Turner A, Taylor HR (2008) Trachoma. Lancet 371: 1945–1954.
    1. Schemann JF, Sacko D, Malvy D, Momo G, Traore L, et al. (2002) Risk factors for trachoma in Mali. International Journal of Epidemiology 31: 194–201.
    1. Taylor HR, West SK, Mmbaga BB, Katala SJ, Turner V, et al. (1989) Hygiene factors and increased risk of trachoma in central Tanzania. Archives of Ophthalmology 107: 1821–1825.
    1. House JI, Ayele B, Porco TC, Zhou Z, Hong KC, et al. (2009) Assessment of herd protection against trachoma due to repeated mass antibiotic distributions: a cluster-randomised trial. Lancet 373: 1111–1118.
    1. Lietman T, Porco T, Dawson C, Blower S (1999) Global elimination of trachoma: how frequently should we administer mass chemotherapy? Nature Medicine 5: 572–576.
    1. Frick KD, Lietman TM, Holm SO, Jha HC, Chaudhary JS, et al. (2001) Cost-effectiveness of trachoma control measures: comparing targeted household treatment and mass treatment of children. Bulletin of the World Health Organization 79: 201–207.
    1. Kolaczinski JH, Robinson E, Finn TP (2011) The cost of antibiotic mass drug administration for trachoma control in a remote area of South Sudan. PLoS Negl Trop Dis 5: e1362.
    1. Keenan JD, Moncada J, Gebre T, Ayele B, Chen MC, et al. (2011) Chlamydial infection during trachoma monitoring: are the most difficult-to-reach children more likely to be infected? Tropical Medicine and International Health
    1. Lakew T, Alemayehu W, Melese M, Yi E, House JI, et al. (2009) Importance of coverage and endemicity on the return of infectious trachoma after a single mass antibiotic distribution. PLoS Negl Trop Dis 3: e507.

Source: PubMed

3
Se inscrever