Baseline characteristics associated with early visual acuity gains after ranibizumab treatment for retinal vein occlusion

W Lloyd Clark, Mimi Liu, John Kitchens, Pin-Wen Wang, Zdenka Haskova, W Lloyd Clark, Mimi Liu, John Kitchens, Pin-Wen Wang, Zdenka Haskova

Abstract

Background: To identify baseline patient characteristics associated with early clinically significant visual acuity (VA) improvements within 3 months of treatment initiation in ranibizumab-treated patients with retinal vein occlusion (RVO) in the SHORE study.

Methods: Post hoc analysis of baseline patient characteristics in the randomized, open-label, vision examiner-masked SHORE phase 4 study that compared monthly versus pro re nata dosing of ranibizumab in patients with branch and central RVO. Patients who enrolled in SHORE fulfilled eligibility criteria per protocol (N = 202). SHORE data were retrospectively analyzed to identify baseline patient characteristics associated with early clinically significant improvements in VA, defined as improvement to a Snellen equivalent of 20/40 or better vision (≥ 69 Early Treatment Diabetic Retinopathy Study [ETDRS] letters) or an increase in best-corrected VA (BCVA) of 15 or more ETDRS letters from baseline within 3 months of treatment initiation. Main outcome measures were BCVA gain of 15 or more ETDRS letters from baseline, Snellen equivalent of 20/40 or better vision, and baseline factors associated with early clinically significant improvement in BCVA.

Results: The median time for patients to achieve a BCVA of 20/40 or better was 59 days and the median time for patients to gain 15 or more ETDRS letters was 63 days. Better baseline BCVA (> 50 ETDRS letters/Snellen equivalent ≥ 20/100), greater baseline total macular volume (> 9.99 mm3), and presence of subretinal fluid at baseline were all associated with early improvement to 20/40 or better vision (ETDRS equivalent ≥ 69 letters; P < .0001, P = .02, and P = .03, respectively).

Conclusions: This retrospective analysis found that better BCVA, greater total macular volume, and presence of subretinal fluid at baseline were associated with more rapid vision gains. Clinicians may find these helpful when considering the likelihood of achieving early clinically significant VA improvements with ranibizumab in patients with RVO.

Trial registration: ClinicalTrials.gov NCT01277302 .

Keywords: Anti-VEGF; BRVO; Branch retinal vein occlusion; CRVO; Central retinal vein occlusion; RVO; Ranibizumab; Retinal vein occlusion.

Conflict of interest statement

Ethics approval and consent to participate

This study includes research conducted on human subjects. The study protocol was prospectively approved by the institutional review board at each study site, and the study was conducted according to the International Conference on Harmonisation E6 Guideline for Good Clinical Practice and any national requirements. Patients provided written, informed consent for the trial and for future medical research and analyses based on results of the trial. The existing data from this clinical trial were assessed retrospectively by exploratory analyses. The study sponsor, Genentech, Inc., granted permission to use the data. No patient identifiable information was connected with the datasets used for these retrospective analyses.

Consent for publication

Not applicable.

Competing interests

The authors have made the following disclosures: WLC has received grant support and served on the speakers’ bureau and as a consultant for Genentech, Inc./Roche (South San Francisco, CA) and Regeneron Pharmaceuticals (Tarrytown, NY); has received travel support and honoraria from Bayer (Leverkusen, Germany); has received grant support and served as a consultant for Santen (Osaka, Japan); and has received grant support from Allergan (Dublin, Ireland). ML has no financial conflicts of interest to disclose. JK has served as a consultant for Alcon (Forth Worth, TX), Allergan (Dublin, Ireland), Genentech, Inc. (South San Francisco, CA), Regeneron (Tarrytown, NY), and ThromboGenics (Leuven, Belgium); and has served as a consultant for and holds stock in Synergetics (O’Fallon, MO). P-wW and ZH are employees of Genentech, Inc. (South San Francisco, CA).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Time to achievement of 20/40 or better vision by baseline best-corrected visual acuity. Excludes 22 (10.9%) patients with 20/40 or better vision at baseline. ETDRS, Early Treatment Diabetic Retinopathy Study
Fig. 2
Fig. 2
Time to achievement of 20/40 or better vision by baseline total macular volume. Excludes 22 (10.9%) patients with 20/40 or better vision at baseline; total macular volume was measured by the digital angiography reading center using spectral-domain optical coherence tomography
Fig. 3
Fig. 3
Time to achievement of 20/40 or better vision by baseline subretinal fluid status. Excludes 22 (10.9%) patients with 20/40 or better vision at baseline; subretinal fluid (presence or absence) by the digital angiography reading center was evaluated using spectral-domain optical coherence tomography

References

    1. Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al.; International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117:313–9 e1.
    1. Awdeh RM, Elsing SH, Deramo VA, Stinnett S, Lee PP, Fekrat S. Vision-related quality of life in persons with unilateral branch retinal vein occlusion using the 25-item National Eye Institute Visual Function Questionnaire. Br J Ophthalmol. 2010;94:319–23.
    1. Deramo VA, Cox TA, Syed AB, Lee PP, Fekrat S. Vision-related quality of life in people with central retinal vein occlusion using the 25-item National Eye Institute Visual Function Questionnaire. Arch Ophthalmol. 2003;121:1297–1302. doi: 10.1001/archopht.121.9.1297.
    1. Laouri M, Chen E, Looman M, Gallagher M. The burden of disease of retinal vein occlusion: review of the literature. Eye (Lond) 2011;25:981–988. doi: 10.1038/eye.2011.92.
    1. Ho M, Liu DT, Lam DS, Jonas JB. Retinal vein occlusions, from basics to the latest treatment. Retina. 2016;36:432–448. doi: 10.1097/IAE.0000000000000843.
    1. Brown DM, Campochiaro PA, Bhisitkul RB, Ho AC, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology. 2011;118:1594–1602. doi: 10.1016/j.ophtha.2011.02.022.
    1. Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, et al.; CRUISE Investigators. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117:1124–33e1.
    1. Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118:2041–2049. doi: 10.1016/j.ophtha.2011.02.038.
    1. Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, et al.; BRAVO Investigators. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117:1102–12e1.
    1. Campochiaro PA, Wykoff CC, Singer M, Johnson R, Marcus D, Yau L, et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study. Ophthalmology. 2014;121:2432–2442. doi: 10.1016/j.ophtha.2014.06.011.
    1. Daien V, Navarre S, Fesler P, Vergely L, Villain M, Schneider C. Visual acuity outcome and predictive factors after bevacizumab for central retinal vein occlusion. Eur J Ophthalmol. 2012;22:1013–1018. doi: 10.5301/ejo.5000162.
    1. Scott IU, VanVeldhuisen PC, Oden NL, Ip MS, Blodi BA, Hartnett ME, et al.; Standard Care versus COrticosteroid for REtinal Vein Occlusion Study Investigator Group. Baseline predictors of visual acuity and retinal thickness outcomes in patients with retinal vein occlusion: Standard Care versus COrticosteroid for REtinal Vein Occlusion Study report 10. Ophthalmology. 2011;118:345–52.
    1. Jaissle GB, Szurman P, Feltgen N, Spitzer B, Pielen A, Rehak M, et al.; Retinal Vein Occlusion Study Group. Predictive factors for functional improvement after intravitreal bevacizumab therapy for macular edema due to branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2011;249:183–92.
    1. Thach AB, Yau L, Hoang C, Tuomi L. Time to clinically significant visual acuity gains after ranibizumab treatment for retinal vein occlusion: BRAVO and CRUISE trials. Ophthalmology. 2014;121:1059–1066. doi: 10.1016/j.ophtha.2013.11.022.
    1. Suñer IJ, Kokame GT, Yu E, Ward J, Dolan C, Bressler NM. Responsiveness of NEI VFQ-25 to changes in visual acuity in neovascular AMD: validation studies from two phase 3 clinical trials. Invest Ophthalmol Vis Sci. 2009;50:3629–3635. doi: 10.1167/iovs.08-3225.
    1. Steinkuller PG. Legal vision requirements for drivers in the United States. Virtual Mentor. 2010;12:938–940. doi: 10.1001/virtualmentor.2010.12.12.hlaw1-1012.
    1. Rezaei KA. Global Trends in Retina. . Accessed 16 May 2018.

Source: PubMed

3
Se inscrever