Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT

Sebastian E Serfling, Constantin Lapa, Niklas Dreher, Philipp E Hartrampf, Steven P Rowe, Takahiro Higuchi, Andreas Schirbel, Alexander Weich, Stefanie Hahner, Martin Fassnacht, Andreas K Buck, Rudolf A Werner, Sebastian E Serfling, Constantin Lapa, Niklas Dreher, Philipp E Hartrampf, Steven P Rowe, Takahiro Higuchi, Andreas Schirbel, Alexander Weich, Stefanie Hahner, Martin Fassnacht, Andreas K Buck, Rudolf A Werner

Abstract

Background: CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs.

Methods: Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [68Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUVmean) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA, defined as SUVmean x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden.

Results: Median SUVmean in unaffected organs was 5.2 for the spleen (range, 2.44 - 10.55), 3.27 for the kidneys (range, 1.52 - 17.4), followed by bone marrow (1.76, range, 0.84 - 3.98), heart (1.66, range, 0.88 - 2.89), and liver (1.28, range, 0.73 - 2.45). No significant correlation between SUVmax in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found.

Conclusions: In patients with solid tumors imaged with [68Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged.

Keywords: C-X-C motif chemokine receptor 4; CXCR4; Endoradiotherapy; PET; Theranostics; [177Lu]/[90Y]PentixaTher; [68Ga]PentixaFor.

Conflict of interest statement

The authors declare no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1.
Fig. 1.
Correlations of mean standardized uptake values (SUVmean) from organs (a, heart; b, liver; c, spleen; d, bone marrow; and e, kidney) with tumor-derived maximum standardized uptake values (SUVmax). Rhombuses and squares are partially overlaid. No significance was reached. R = right. L = left
Fig. 2.
Fig. 2.
Correlations of mean standardized uptake values (SUVmean) from organs (a, heart; b, liver; c, spleen; d, bone marrow; and e, kidney) with PET-based tumor volume (cm3). No significance was reached. Rhombuses and squares are partially overlaid. R = right. L = left
Fig. 3.
Fig. 3.
Planar maximum intensity projection (MIP) of patients with different tumor burden which have been scanned using [68Ga]Ga-PentixaFor PET. Patient in (a) has low, patient in (b) has intermediate and patient in (c) has high tumor burden. Red arrows indicate tumor lesions. On a visual assessment, normal organ uptake did not decrease in patients with high tumor burden. Due to the extensive tumor burden in (c), bone marrow (BM) was not marked. H = heart, L = liver, K = kidney, and S = spleen

References

    1. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82. doi: 10.1016/B978-0-12-411638-2.00002-1.
    1. Philipp-Abbrederis K, Herrmann K, Knop S, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7:477–487. doi: 10.15252/emmm.201404698.
    1. Zhou X, Dierks A, Kertels O, et al. (2020) 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers (Basel) 12.
    1. Duell J, Krummenast F, Schirbel A, et al. Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. J Nucl Med. 2021;62:1415–1421. doi: 10.2967/jnumed.120.257279.
    1. Werner RA, Kircher S, Higuchi T, et al. CXCR4-Directed Imaging in Solid Tumors. Front Oncol. 2019;9:770. doi: 10.3389/fonc.2019.00770.
    1. Lewis R, Habringer S, Kircher M, et al. Investigation of spleen CXCR4 expression by [(68)Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res. 2021;11:77. doi: 10.1186/s13550-021-00822-6.
    1. Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics. 2017;7:1589–1597. doi: 10.7150/thno.19050.
    1. Schottelius M, Herrmann K, Lapa C (2021) In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 13.
    1. Ghobrial IM, Liu CJ, Zavidij O, et al. Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. Am J Hematol. 2019;94:1244–1253. doi: 10.1002/ajh.25627.
    1. Ludwig H, Weisel K, Petrucci MT, et al. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a Phase IIa Study. Leukemia. 2017;31:997–1000. doi: 10.1038/leu.2017.5.
    1. Beauregard JM, Hofman MS, Kong G, Hicks RJ. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39:50–56. doi: 10.1007/s00259-011-1937-3.
    1. Gafita A, Wang H, Robertson A, et al. (2021) Tumor sink effect in (68)Ga-PSMA-11 PET: Myth or Reality? J Nucl Med.
    1. Weich A, Werner RA, Buck AK, et al. (2021) CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics (Basel) 11.
    1. Werner RA, Weich A, Higuchi T, et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics. 2017;7:1489–1498. doi: 10.7150/thno.18754.
    1. Bluemel C, Hahner S, Heinze B, et al. Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clin Nucl Med. 2017;42:e29–e34. doi: 10.1097/RLU.0000000000001435.
    1. Herrmann K, Lapa C, Wester HJ, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med. 2015;56:410–416. doi: 10.2967/jnumed.114.151647.
    1. Werner RA, Hanscheid H, Leal JP, et al. Impact of Tumor Burden on Quantitative [(68)Ga] DOTATOC Biodistribution. Mol Imaging Biol. 2019;21:790–798. doi: 10.1007/s11307-018-1293-9.
    1. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–945. doi: 10.2967/jnumed.106.035774.
    1. Werner RA, Bundschuh RA, Bundschuh L, et al. Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Impact of Tumor Burden on Normal Organ Uptake. Mol Imaging Biol. 2020;22:190–197. doi: 10.1007/s11307-019-01375-w.
    1. Lapa C, Schreder M, Schirbel A, et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [(18)F]FDG and laboratory values. Theranostics. 2017;7:205–212. doi: 10.7150/thno.16576.
    1. Mayerhoefer M, Raderer M, Lamm W, et al. (2021) CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line H. pylori eradication. Blood.
    1. Vag T, Gerngross C, Herhaus P, et al. First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med. 2016;57:741–746. doi: 10.2967/jnumed.115.161034.
    1. Reubi JC, Schar JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–282. doi: 10.1007/s002590050034.
    1. Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 Ligands: The Next Big Hit? J Nucl Med. 2017;58:77S–82S. doi: 10.2967/jnumed.116.186874.
    1. Ghosh A, Wang X, Klein E, Heston WD. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 2005;65:727–731. doi: 10.1158/0008-5472.727.65.3.
    1. Remes SM, Leijon HL, Vesterinen TJ, Arola JT, Haglund CH. Immunohistochemical Expression of Somatostatin Receptor Subtypes in a Panel of Neuroendocrine Neoplasias. J Histochem Cytochem. 2019;67:735–743. doi: 10.1369/0022155419856900.
    1. Santagata S, Ierano C, Trotta AM, et al. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol. 2021;11:591386. doi: 10.3389/fonc.2021.591386.
    1. Hattermann K, Mentlein R. An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann Anat. 2013;195:103–110. doi: 10.1016/j.aanat.2012.10.013.
    1. Kim SW, Kim HY, Lee HJ, Yun HJ, Kim S, Jo DY. Dexamethasone and hypoxia upregulate CXCR4 expression in myeloma cells. Leuk Lymphoma. 2009;50:1163–1173. doi: 10.1080/10428190902893801.
    1. Lapa C, Luckerath K, Kircher S, et al. Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. Br J Haematol. 2019;184:440–443. doi: 10.1111/bjh.15096.
    1. Werner RA, Bundschuh RA, Bundschuh L, et al. Molecular imaging reporting and data systems (MI-RADS): a generalizable framework for targeted radiotracers with theranostic implications. Ann Nucl Med. 2018;32:512–522. doi: 10.1007/s12149-018-1291-7.
    1. Werner RA, Bundschuh RA, Bundschuh L, et al. Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on (18)F-DCFPyL PET/CT Imaging. J Nucl Med. 2018;59:1857–1864. doi: 10.2967/jnumed.118.217588.
    1. Sahakyan K, Li X, Lodge MA, et al. Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Intrapatient and Interpatient Variability of Normal Organ Uptake. Mol Imaging Biol. 2020;22:181–189. doi: 10.1007/s11307-019-01376-9.

Source: PubMed

3
Se inscrever