Effect of an Active Video Game Intervention Combined With Multicomponent Exercise for Cardiorespiratory Fitness in Children With Overweight and Obesity: Randomized Controlled Trial

Cristina Comeras-Chueca, Lorena Villalba-Heredia, Jose Luis Perez-Lasierra, Gabriel Lozano-Berges, Angel Matute-Llorente, German Vicente-Rodriguez, Jose Antonio Casajus, Alex Gonzalez-Aguero, Cristina Comeras-Chueca, Lorena Villalba-Heredia, Jose Luis Perez-Lasierra, Gabriel Lozano-Berges, Angel Matute-Llorente, German Vicente-Rodriguez, Jose Antonio Casajus, Alex Gonzalez-Aguero

Abstract

Background: Childhood overweight and obesity have become major global health problems and are negatively related with the cardiorespiratory fitness (CRF) level in school children and adolescents. Exercise, specifically multicomponent training, is effective for CRF improvement, but the main challenge is to ensure adherence to exercise in children with overweight and obesity. Therefore, new ways of exercising that are more attractive and motivational for this population are needed and playing or training with active video games (AVGs) has been proposed as an effective alternative because they require full-body movement and therefore increase energy expenditure.

Objective: The main aim of this study was to investigate the effects of an AVG intervention combined with multicomponent training on CRF at maximal and submaximal intensities in children with overweight or obesity.

Methods: We recruited 28 children (13 girls and 15 boys) aged 9 to 11 years with overweight or obesity from medical centers and divided them into 2 groups, an intervention group (n=20) that participated in a 5-month supervised AVG exercise program combined with multicomponent exercise, and a control group (n=8) that continued daily activities without modification. A maximal stress test to measure CRF using a walking-graded protocol with respiratory gas exchange was performed by the participants.

Results: The AVG group showed a significant decrease in heart rate and oxygen uptake for the same intensities in the submaximal stages of the maximal treadmill test, as well as a lower oxygen uptake percentage according to the individual maximal oxygen uptake, whereas the control group did not show overall changes. No change in the peak oxygen uptake (VO2peak) was found.

Conclusions: A 5-month AVG intervention combined with multicomponent exercise had positive effects on CRF at submaximal intensity, showing a lower heart rate and oxygen uptake at the same intensities and displaying a lower oxygen uptake percentage according to the individual (VO2peak). Greater benefits were found in children with the highest fat percentage.

Trial registration: ClinicalTrials.gov NCT04418713; https://ichgcp.net/clinical-trials-registry/NCT04418713.

Keywords: VO2peak; active videogames; cardiorespiratory; childhood; fitness; gaming; intervention; obesity; prepuberty.

Conflict of interest statement

Conflicts of Interest: None declared.

©Cristina Comeras-Chueca, Lorena Villalba-Heredia, Jose Luis Perez-Lasierra, Gabriel Lozano-Berges, Angel Matute-Llorente, German Vicente-Rodriguez, Jose Antonio Casajus, Alex Gonzalez-Aguero. Originally published in JMIR Serious Games (https://games.jmir.org), 24.05.2022.

Figures

Figure 1
Figure 1
Changes in VO2 during the different stages of the maximal stress test observed for the (A) active video game group and (B) control group.

References

    1. Katzmarzyk PT, Chaput J, Fogelholm M, Hu G, Maher C, Maia J, Olds T, Sarmiento OL, Standage M, Tremblay MS, Tudor-Locke C. International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): contributions to understanding the global obesity epidemic. Nutrients. 2019 Apr;11(4):1–24. doi: 10.3390/nu11040848. nu11040848
    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NME, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang J, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DFJ, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SEAH, Kengne AP, Khader YS, Khang Y, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KMV, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJC, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van DVS, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon S, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJL, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug;384(9945):766–781. doi: 10.1016/S0140-6736(14)60460-8.S0140-6736(14)60460-8
    1. World Health Organization . World Health Organization. Geneva, Switzerland: World Health Organization; 2016. [2019-05-03]. Consideration of the evidence on childhood obesity for the Commission on Ending Childhood Obesity: report of the ad hoc working group on science and evidence for ending childhood obesity. .
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017 Dec;390(10113):2627–2642. doi: 10.1016/S0140-6736(17)32129-3. S0140-6736(17)32129-3
    1. Nittari G, Scuri S, Petrelli F, Pirillo I, di Luca NM, Grappasonni I. Fighting obesity in children from European World Health Organization member states. Epidemiological data, medical–social aspects, and prevention programs. Clin Ter. 2019 May;170(3):e223–e230. doi: 10.7417/CT.2019.2137.
    1. Gurnani M, Birken C, Hamilton J. Childhood obesity: causes, consequences, and management. Pediatr Clin North Am. 2015 Aug;62(4):821–840. doi: 10.1016/j.pcl.2015.04.001.
    1. McCrindle BW. Cardiovascular consequences of childhood obesity. Can J Cardiol. 2015 Feb;31(2):124–130. doi: 10.1016/j.cjca.2014.08.017.
    1. Ceschia A, Giacomini S, Santarossa S, Rugo M, Salvadego D, Da Ponte A, Driussi C, Mihaleje M, Poser S, Lazzer S. Deleterious effects of obesity on physical fitness in pre-pubertal children. Eur J Sport Sci. 2016;16(2):271–278. doi: 10.1080/17461391.2015.1030454.
    1. Tsiros MD, Coates AM, Howe PRC, Walkley J, Hills AP, Wood RE, Buckley JD. Adiposity is related to decrements in cardiorespiratory fitness in obese and normal-weight children. Pediatr Obes. 2016 Apr;11(2):144–150. doi: 10.1111/ijpo.12037.
    1. Tuan S-H, Li C-H, Sun S-F, Li M-H, Liou I-H, Weng T-P, Chen I-H, Lin K-L. Comparison of cardiorespiratory fitness between preschool children with normal and excess body adipose ~ an observational study. PLoS One. 2019 Oct;14(10):e0223907. doi: 10.1371/journal.pone.0223907. PONE-D-19-10645
    1. Brunet M, Chaput J-P, Tremblay A. The association between low physical fitness and high body mass index or waist circumference is increasing with age in children: the 'Québec en Forme' Project. Int J Obes (Lond) 2007 Apr;31(4):637–643. doi: 10.1038/sj.ijo.0803448.0803448
    1. Schmidt MD, Magnussen CG, Rees E, Dwyer T, Venn AJ. Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity. Int J Obes (Lond) 2016 Jul;40(7):1134–1140. doi: 10.1038/ijo.2016.61.ijo201661
    1. Zaqout M, Michels N, Bammann K, Ahrens W, Sprengeler O, Molnar D, Hadjigeorgiou C, Eiben G, Konstabel K, Russo P, Jiménez-Pavón D, Moreno LA, De Henauw S. Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. Int J Obes (Lond) 2016 Jul;40(7):1119–1125. doi: 10.1038/ijo.2016.22.ijo201622
    1. Eisenmann JC. Aerobic fitness, fatness and the metabolic syndrome in children and adolescents. Acta Paediatr. 2007 Dec;96(12):1723–1729. doi: 10.1111/j.1651-2227.2007.00534.x.APA534
    1. Pahkala K, Hernelahti M, Heinonen OJ, Raittinen P, Hakanen M, Lagström H, Viikari JSA, Rönnemaa T, Raitakari OT, Simell O. Body mass index, fitness and physical activity from childhood through adolescence. Br J Sports Med. 2012 Jul 18;47(2):71–77. doi: 10.1136/bjsports-2011-090704.
    1. Racette SB, Uhrich ML, White ML, Yu L, Clark BR. Sex differences in FITNESSGRAM® health risk based on aerobic capacity and body composition among urban public elementary school children. Prev Med. 2017 Oct;103:56–59. doi: 10.1016/j.ypmed.2017.07.032.S0091-7435(17)30279-7
    1. Ara I, Moreno LA, Leiva MT, Gutin B, Casajús JA. Adiposity, physical activity, and physical fitness among children from Aragón, Spain. Obesity (Silver Spring) 2007 Aug;15(8):1918–1924. doi: 10.1038/oby.2007.228. doi: 10.1038/oby.2007.228.15/8/1918
    1. Szmodis M, Szmodis I, Farkas A, Mészáros Z, Mészáros J, Kemper HCG. The relationship between body fat percentage and some anthropometric and physical fitness characteristics in pre- and peripubertal boys. Int J Environ Res Public Health. 2019 Apr;16(7):1170. doi: 10.3390/ijerph16071170. ijerph16071170
    1. García-Hermoso A, Izquierdo M, Alonso-Martínez AM, Faigenbaum A, Olloquequi J, Ramírez-Vélez R. Association between exercise-induced changes in cardiorespiratory fitness and adiposity among overweight and obese youth: a meta-analysis and meta-regression analysis. Children (Basel) 2020 Sep;7(9):147. doi: 10.3390/children7090147. children7090147
    1. Lima RA, Pfeiffer KA, Bugge A, Møller NC, Andersen LB, Stodden DF. Motor competence and cardiorespiratory fitness have greater influence on body fatness than physical activity across time. Scand J Med Sci Sports. 2017 Dec;27(12):1638–1647. doi: 10.1111/sms.12850.
    1. Lima RA, Bugge A, Ersbøll AK, Stodden DF, Andersen LB. The longitudinal relationship between motor competence and measures of fatness and fitness from childhood into adolescence. J Pediatr (Rio J) 2019 Jul;95(4):482–488. doi: 10.1016/j.jped.2018.02.010. S0021-7557(17)31000-8
    1. García-Hermoso A, Ramírez-Vélez R, Saavedra JM. Exercise, health outcomes, and pædiatric obesity: a systematic review of meta-analyses. J Sci Med Sport. 2019 Jan;22(1):76–84. doi: 10.1016/j.jsams.2018.07.006.S1440-2440(18)30376-1
    1. Alves ASR, Venâncio TL, Honório SAA, Martins JMC. Multicomponent training with different frequencies on body composition and physical fitness in obese children. An Acad Bras Cienc. 2019 Nov;91(4):e20181264. doi: 10.1590/0001-3765201920181264. S0001-37652019000700802
    1. Beedie C, Mann S, Jimenez A, Kennedy L, Lane AM, Domone S, Wilson S, Whyte G. Death by effectiveness: exercise as medicine caught in the efficacy trap! Br J Sports Med. 2015 Feb;50(6):323–324. doi: 10.1136/bjsports-2014-094389.
    1. Oh Y, Yang S. Meaningful Play 2010 Conference Proceedings; Meaningful Play; October 21-23, 2010; East Lansing, MI, United States. 2010. Oct,
    1. Comeras-Chueca C, Villalba-Heredia L, Pérez-Llera M, Lozano-Berges G, Marín-Puyalto J, Vicente-Rodríguez G, Matute-Llorente A, Casajús JA, González-Agüero A. Assessment of active video games' energy expenditure in children with overweight and obesity and differences by gender. Int J Environ Res Public Health. 2020 Sep;17(18):6714. doi: 10.3390/ijerph17186714. ijerph17186714
    1. Liang Y, Lau PWC. Effects of active videogames on physical activity and related outcomes among healthy children: a systematic review. Games Health J. 2014 Jun;3(3):122–44. doi: 10.1089/g4h.2013.0070.
    1. De Brito-Gomes JL, Perrier-Melo R, Fernandes Melo de Oliveira S, De Sá Pereira Guimarães FJ, da Cunha Costa M. Physical effort, energy expenditure, and motivation in structured and unstructured active video games: a randomized controlled trial. Human Movement. 2016;17(3):190–198. doi: 10.1515/humo-2016-0021.
    1. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013 Nov;310(20):2191–2194. doi: 10.1001/jama.2013.281053.
    1. World Medical Association Declaration of Taipei- research on health databases, big data and biobanks. World Medical Association. 2016. [2020-01-23].
    1. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012 Aug;7(4):284–294. doi: 10.1111/j.2047-6310.2012.00064.x.
    1. Gao Z, Chen S, Pasco D, Pope Z. A meta-analysis of active video games on health outcomes among children and adolescents. Obes Rev. 2015 May;16(9):783–794. doi: 10.1111/obr.12287.
    1. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012 Feb;141(1):2–18. doi: 10.1037/a0024338.2011-16756-001
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York: Routledge; 1988. p. 567.
    1. Johansson L, Brissman M, Morinder G, Westerståhl M, Marcus C. Reference values and secular trends for cardiorespiratory fitness in children and adolescents with obesity. Acta Paediatr. 2020 Aug;109(8):1665–1671. doi: 10.1111/apa.15163.
    1. Ruiz JR, Cavero-Redondo I, Ortega FB, Welk GJ, Andersen LB, Martinez-Vizcaino V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? a systematic review and meta-analysis. Br J Sports Med. 2016 Dec;50(23):1451–1458. doi: 10.1136/bjsports-2015-095903.bjsports-2015-095903
    1. Armstrong N, Welsman J, Winsley R. Is peak VO2 a maximal index of children's aerobic fitness? Int J Sports Med. 1996 Jul;17(5):356–359. doi: 10.1055/s-2007-972860.
    1. Howley ET, Basseti DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995 Sep;27(9):1292–1301.
    1. Adamo KB, Rutherford JA, Goldfield GS. Effects of interactive video game cycling on overweight and obese adolescent health. Appl Physiol Nutr Metab. 2010 Dec;35(6):805–815. doi: 10.1139/h10-078.
    1. Goldfield GS, Adamo KB, Rutherford J, Murray M. The effects of aerobic exercise on psychosocial functioning of adolescents who are overweight or obese. J Pediatr Psychol. 2012 Nov;37(10):1136–1147. doi: 10.1093/jpepsy/jss084.jss084
    1. Maddison R, Foley L, Ni MC, Jiang Y, Jull A, Prapavessis H, Hohepa M, Rodgers A. Effects of active video games on body composition: a randomized controlled trial. Am J Clin Nutr. 2011 Jul;94(1):153–163. doi: 10.3945/ajcn.110.009142.
    1. Maddison R, Mhurchu CN, Jull A, Prapavessis H, Foley LS, Jiang Y. Active video games: the mediating effect of aerobic fitness on body composition. Int J Behav Nutr Phys Act. 2012 May;9(1):54. doi: 10.1186/1479-5868-9-54.
    1. Maloney AE, Threlkeld KA, Cook WL. Comparative effectiveness of a 12-week physical activity intervention for overweight and obese youth: exergaming with “Dance Dance Revolution”. Games Health J. 2012 Apr;1(2):96–103. doi: 10.1089/g4h.2011.0009.
    1. Christison AL, Evans TA, Bleess BB, Wang H, Aldag JC, Binns HJ. Exergaming for health: a randomized study of community-based exergaming curriculum in pediatric weight management. Games Health J. 2016 Dec;5(6):413–421. doi: 10.1089/g4h.2015.0097.
    1. Bonney E, Ferguson G, Burgess T, Smits-Engelsman B. Benefits of activity-based interventions among female Adolescents Who are overweight and obese. Pediatr Phys Ther. 2019 Oct;31(4):338–345. doi: 10.1097/PEP.0000000000000636.00001577-201910000-00009
    1. Huang H-H, Cook L, Harrison J, O’Keefe N, Schultz K, Curtis DA. Exercise by playing active video gaming in overweight and obese children. J Phys Ther Sports Med. 2017;01(01):25–31. doi: 10.35841/physical-therapy.1.1.25-31.
    1. Calcaterra V, Larizza D, Codrons E, De Silvestri A, Brambilla P, Abela S, Arpesella M, Vandoni M. Improved metabolic and cardiorespiratory fitness during a recreational training program in obese children. J Pediatr Endocrinol Metab. 2013;26(3-4):271–276. doi: 10.1515/jpem-2012-0157./j/jpem.ahead-of-print/jpem-2012-0157/jpem-2012-0157.xml
    1. Zeng N, Gao Z. Exergaming and obesity in youth: current perspectives. Int J Gen Med. 2016 Aug;9:275–284. doi: 10.2147/IJGM.S99025. doi: 10.2147/IJGM.S99025.ijgm-9-275
    1. Ye S, Lee JE, Stodden DF, Gao Z. Impact of exergaming on children’s motor skill competence and health-related fitness: a quasi-experimental study. J Clin Med. 2018 Sep;7(9):1–11. doi: 10.3390/jcm7090261.
    1. Fu Y, Burns RD. Effect of an active video gaming classroom curriculum on health-related fitness, school day step counts, and motivation in sixth graders. J Phys Act Health. 2018 Sep;15(9):644–650. doi: 10.1123/jpah.2017-0481.
    1. Lau PWC, Wang JJ, Maddison R. A randomized-controlled trial of school-based active videogame intervention on Chinese children's aerobic fitness, physical activity level, and psychological correlates. Games Health J. 2016 Dec;5(6):405–412. doi: 10.1089/g4h.2016.0057.
    1. Gao Z, Lee JE, Zeng N, Pope ZC, Zhang Y, Li X. Home-based exergaming on preschoolers' energy expenditure, cardiovascular fitness, body mass index and cognitive flexibility: a randomized controlled trial. J Clin Med. 2019 Oct;8(10):1745. doi: 10.3390/jcm8101745. jcm8101745
    1. Ye S, Pope Z, Lee J, Gao Z. Effects of school-based exergaming on urban children’s physical activity and cardiorespiratory fitness: a quasi-experimental study. Int J Environ Res Public Health. 2019 Oct;16(21):4080. doi: 10.3390/ijerph16214080.
    1. Azevedo LB, Burges Watson D, Haighton C, Adams J. The effect of dance mat exergaming systems on physical activity and health-related outcomes in secondary schools: results from a natural experiment. BMC Public Health. 2014 Sep;14:951. doi: 10.1186/1471-2458-14-951. 1471-2458-14-951

Source: PubMed

3
Se inscrever