Determinants of lifestyle behavior change to prevent type 2 diabetes in high-risk individuals

N R den Braver, E de Vet, G Duijzer, J Ter Beek, S C Jansen, G J Hiddink, E J M Feskens, A Haveman-Nies, N R den Braver, E de Vet, G Duijzer, J Ter Beek, S C Jansen, G J Hiddink, E J M Feskens, A Haveman-Nies

Abstract

Background: Although there are many effective lifestyle interventions for type 2 diabetes (T2DM) prevention, insight into effective intervention pathways, especially of long-term interventions, is often lacking. This study aims to provide insight into the effective intervention pathways of the SLIMMER diabetes prevention intervention using mediation analyses.

Methods: In total, 240 participants at increased risk of T2DM were included in the analyses over 18 months. The intervention was a combined lifestyle intervention with a dietary and a physical activity (PA) component. The primary and secondary outcomes were change in fasting insulin (pmol/L) and change in body weight (kg) after 18 months, respectively. Firstly, in a multiple mediator model, we investigated whether significant changes in these outcomes were mediated by changes in dietary and PA behavior. Secondly, in multiple single mediator models, we investigated whether changes in dietary and PA behavior were mediated by changes in behavioral determinants and the participants' psychological profile. The mediation analyses used linear regression models, where significance of indirect effects was calculated with bootstrapping.

Results: The effect of the intervention on decreased fasting insulin was 40% mediated by change in dietary and PA behavior, where dietary behavior was an independent mediator of the association (34%). The effect of the intervention on decreased body weight was 20% mediated by change in dietary and PA behavior, where PA behavior was an independent mediator (17%). The intervention significantly changed intake of fruit, fat from bread spread, and fiber from bread. Change in fruit intake was mediated by change in action control (combination of consciousness, self-control, and effort), motivation, self-efficacy, intention, and skills. Change in fat intake was mediated by change in action control and psychological profile. No mediators could be identified for change in fiber intake. The change in PA behavior was mediated by change in action control, motivation, and psychological profile.

Conclusion: The effect of the SLIMMER intervention on fasting insulin and body weight was mediated by changes in dietary and PA behavior, in distinct ways. These results indicate that changing dietary as well as PA behavior is important in T2DM prevention.

Trial registration: ClinicalTrials.gov NCT02094911.

Keywords: Behavioral determinants; Lifestyle intervention; Mediation; Prevention; Primary healthcare; Type 2 Diabetes Mellitus.

Figures

Fig. 1
Fig. 1
Flow chart
Fig. 2
Fig. 2
Causal model of SLIMMER intervention
Fig. 3
Fig. 3
Multiple mediator model for intervention effect via dietary and physical activity behavior. The a1 path represents the association between intervention and NBS index. B1 represents the association between NBS index and outcome (y), corrected for intervention. A2 and b2 are interpreted similarly. The c path represents the crude association between intervention and outcome. C′ represents the association between intervention and outcome corrected for NBS and PA
Fig. 4
Fig. 4
Single mediator models for intervention effect on health behavior (y) via behavioral determinants (m). Path a represents the association between intervention (x) and individual behavioral determinants (m). Path b represents the relation between individual behavior determinants (m) and dietary/PA behaviors (y). C path represents the crude association of the intervention (x) on each of the health behaviors (y). C′ path represents the association between intervention (x) and a health behavior (y) corrected for behavioral determinant (m)

References

    1. Ashra N, Spong R, Carter P, Davies M, Dunkley A, Gillies C, et al. A systematic review and meta- analysis assessing the effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes mellitus in routine practice About Public Health England. England: Public Health; 2015.
    1. Lakerveld J, Bot SDM, Chinapaw MJM, Knol DL, de Vet HCW, Nijpels G. Measuring pathways towards a healthier lifestyle in the Hoorn Prevention Study: The Determinants of Lifestyle Behavior Questionnaire (DLBQ). Patient Educ Couns. 2011;2:85.
    1. Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26:3230–3236. doi: 10.2337/diacare.26.12.3230.
    1. Schwarz PE, Greaves CJ, Lindström J, Yates T, Davies MJ. Nonpharmacological interventions for the prevention of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(6):363–73.
    1. Johnson M, Jones R, Freeman C, Woods HB, Gillett M, Goyder E, et al. Can diabetes prevention programmes be translated effectively into real-world settings and still deliver improved outcomes? A synthesis of evidence. Diabet Med. 2013;30:3–15. doi: 10.1111/dme.12018.
    1. Aguiar EJ, Morgan PJ, Collins CE, Plotnikoff RC, Callister R. Efficacy of interventions that include diet, aerobic and resistance training components for type 2 diabetes prevention: a systematic review with meta-analysis. Int J Behav Nutr Phys Act. 2014;11:2. doi: 10.1186/1479-5868-11-2.
    1. Teixeira PJ, Carraça EV, Marques MM, Rutter H, Oppert JM, De Bourdeaudhuij I, et al. Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med. 2015;13
    1. Brown SA, García AA, Brown A, Becker BJ, Conn VS, Ramírez G, et al. Patient Education and Counseling Biobehavioral determinants of glycemic control in type 2 diabetes: A systematic review and meta-analysis. Patient Educ. Couns. Elsevier Ireland Ltd. 2016; Available from: 10.1016/j.pec.2016.03.020
    1. Duijzer G, Haveman-Nies A, Jansen SC, ter Beek, J, van Bruggen R, Willink M, Hiddink GJ, Feskens E. Effect and maintenance of the SLIMMER diabetes prevention lifestyle intervention in Dutch primary health care: a randomised controlled trial. Accept Publ Nut Diabetes. 2017.
    1. van Dongen EJI, Duijzer G, Jansen SC, ter Beek J, Huijg JM, Leerlooijer JN, et al. Process evaluation of a randomised controlled trial of a diabetes prevention intervention in Dutch primary health care: the SLIMMER study. Public Health Nutr. Cambridge: Cambridge University Press. 2016;19(16):3027–38.
    1. Duijzer G, Haveman-Nies A, Jansen SC, Ter Beek J, Hiddink GJ, Feskens EJ. SLIMMER: a randomised controlled trial of diabetes prevention in Dutch primary health care: design and methods for process, effect, and economic evaluation. BMC Public Health. 2014;14:602. Available from:
    1. Jansen SC, Haveman-Nies A, Duijzer G, Ter Beek J, Hiddink GJ, Feskens EJ. Adapting the SLIM diabetes prevention intervention to a Dutch real-life setting: joint decision making by science and practice. BMC Public Health. 2013;13:457. Available from:
    1. Elsman EBM, Leerlooijer JN, Ter Beek J, Duijzer G, Jansen SC, Hiddink GJ, et al. Using the intervention mapping protocol to develop a maintenance programme for the SLIMMER diabetes prevention intervention. BMC Public Health. 2014;14:1108. Available from:
    1. Johnson JL, Duick DS, Chui MA, Aldasouqi SA. Identifying prediabetes using fasting insulin levels. Endocr Pract. 2010;16:47–52. doi: 10.4158/EP09031.OR.
    1. Hou XIZ. Performance of an A1C and Fasting Capillary Blood Glucose Test for Screening Newly Diagnosed Diabetes and Pre-Diabetes Defined by an Oral Glucose Tolerance Test in Qingdao, China , Diabetes Care 2010;33:0–5.
    1. Drzewoski J, Czupryniak L. Concordance between fasting and 2-h post-glucose challenge criteria for the diagnosis of diabetes mellitus and glucose intolerance in high risk individuals. Diabet Med. 2001;18:29–31. doi: 10.1046/j.1464-5491.2001.00403.x.
    1. Hodge AM, English DR, O’Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care. 2004;27:2701–2706. doi: 10.2337/diacare.27.11.2701.
    1. Lindström J, Peltonen M, Eriksson JG, Louheranta A, Fogelholm M, Uusitupa M, et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: The Finnish Diabetes Prevention Study. Diabetologia. 2006;49:912–920. doi: 10.1007/s00125-006-0198-3.
    1. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–13. Available from:
    1. Streppel MT, de Vries JHM, Meijboom S, Beekman M, de Craen AJM, Slagboom PE, et al. Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden Longevity Study. Nutr J. 2013;12:75. Available from:
    1. Siebelink E, Geelen A, De Vries JHM. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Brit J Nutr. 2011;2:274–81. doi: 10.1017/S0007114511000067.
    1. Van Lee L, Geelen A, van Huysduynen EJ, de Vries JH, Van’t Veer P, Feskens EJM. The Dutch Healthy Diet index ( DHD-index ): an instrument to measure adherence to the Dutch Guidelines for a Healthy Diet. Nutr J. 2012;11:1–9. doi: 10.1186/1475-2891-11-59.
    1. Wendel-Vos GCW, Schuit AJ, Saris WHM, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56:1163–1169. doi: 10.1016/S0895-4356(03)00220-8.
    1. Bartholomew LK, Parcel GS, Kok G. Intervention mapping: a process for developing theory and evidence-based health education programs. Heal Educ Behav. 1998;25:545–563. doi: 10.1177/109019819802500502.
    1. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann Behav Med. 2013;46:81–95. Available from: 10.1007/s12160-013-9486-6
    1. Fishbein M, Ajzen I. Predicting and changing behavior, the reasoned action approach. New York: Psychology Press Taylor & Francis Group; 2010.
    1. Helmink JHM, van Boekel LC, SJP K. Pilot Beweegkuur overweight and obesity. Results of a follow-up measurement of participants. Maastricht: Maastricht University; 2010.
    1. Mackinnon DP, Fairchild AJ, Fritz MS. Mediation Analysis. Annu Rev Psychol. 2007;58:593–615. doi: 10.1146/annurev.psych.58.110405.085542.
    1. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40:879–891. doi: 10.3758/BRM.40.3.879.
    1. Hayes AF. Introduction to Mediation, Moderation, and Conditional Process Analysis A Regression-Based Approach. Guilford Press. 2013;1-39.
    1. Yoon U, Kwok LL, Magkidis A. Efficacy of lifestyle interventions in reducing diabetes incidence in patients with impaired glucose tolerance: A systematic review of randomized controlled trials. Metabolism. 2013;62:303–314. doi: 10.1016/j.metabol.2012.07.009.
    1. Yamaoka K, Tango T. Reviews / Commentaries / ADA Statements Efficacy of Lifestyle Education to Prevent Type 2 Diabetes A meta-analysis of randomized controlled trials. Diab Care. 2005;2:28.
    1. Cloostermans L, Wendel-vos W, Doornbos G, Howard B, Craig CL, Kivimäki M, et al. Independent and combined effects of physical activity and body mass index on the development of Type 2 Diabetes – a meta-analysis of 9 prospective cohort studies. Int J Behav Nutr Phys Act. 2015; Available from: 10.1186/s12966-015-0304-3
    1. Feskens EJM, Virtanen SM, Rasanen L, Al E. Dietary factors determining diabetes and impaired glucose tolerance. Diabetes Care. 1995;18:1104–1112. doi: 10.2337/diacare.18.8.1104.
    1. Sniehotta FF, Scholz U, Schwarzer R. Bridging the intention–behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychol Health. 2005;2:143–60.
    1. Zhou G, Gan Y, Miao M, Hamilton K, Knoll N, Schwarzer R. The role of action control and action planning on fruit and vegetable consumption. Appetite. Elsevier Ltd. 2015;91:64–8. Available from: 10.1016/j.appet.2015.03.022

Source: PubMed

3
Se inscrever