Pacemaker detected active minutes are superior to pedometer-based step counts in measuring the response to physical activity counseling in sedentary older adults

Venkata K Puppala, Benjamin C Hofeld, Amberly Anger, Sudhi Tyagi, Scott J Strath, Judith Fox, Marcie G Berger, Kwang Woo Ahn, Michael E Widlansky, Venkata K Puppala, Benjamin C Hofeld, Amberly Anger, Sudhi Tyagi, Scott J Strath, Judith Fox, Marcie G Berger, Kwang Woo Ahn, Michael E Widlansky

Abstract

Background: In patients with permanent pacemakers (PPM), physical activity (PA) can be monitored using embedded accelerometers to measure pacemaker detected active hours (PDAH), a strong predictor of mortality. We examined the impact of a PA Counseling (PAC) intervention on increasing activity as measured by PDAH and daily step counts.

Methods: Thirteen patients (average age 80 ± 6 years, 84.6% women) with implanted Medtronic PPMs with a ≤ 2 PDAH daily average were included in this study. Patients were randomized to Usual Care (UC, N = 6) or a Physical Activity Counseling Intervention (PACI, N = 7) groups. Step count and PDAH data were obtained at baseline, following a 12-week intervention, then 12 weeks after intervention completion. Data were analyzed using independent t-tests, Pearson's r, chi-square, and general linear models for repeated measures.

Results: PDAH significantly differed by time point for all subject combined (P = 0.01) but not by study group. Subjects with baseline gait speeds of > 0.8 m/sec were responsible for the increases in PDAH observed. Step counts did not differ over time in the entire cohort or by study group. Step count and PDAH significantly correlated at baseline (r = 0.60, P = 0.03). This correlation disappeared by week 12.

Conclusion(s): PDAH can be used to monitor PA and PA interventions and may be superior to hip-worn pedometers in detecting activity. A significant increase in PA, regardless of treatment group, suggests that patient awareness of the ability to monitor PA through a PPM increases PA in these patients, particularly in patients with gait speeds of < 0.8 m/sec.

Trial registration: ClincalTrials.gov NCT03052829. Date of Registration: 2/14/2017.

Keywords: Accelerometer; Cardiology; Geriatrics; Pacemaker; Physical activity.

Conflict of interest statement

None.

Figures

Fig. 1
Fig. 1
Recruitment and Study Participation Flow Chart
Fig. 2
Fig. 2
PDAH and Step Count Results for each study period. a PDAH results showed an overall increase in PDAH comparing the 12-week intervention period to baseline that did not significantly differ between the PACI and UC arms. b Step Count results showed no differences in measured step counts over the time course of the study and no differences in step counts between the PACI and UC groups. See Table 2 and the results section for additional details. PDAH- Pacemaker-Derived Active Hours. PACI- Physical Activity Counseling Intervention. UC- Usual Care. Data presented as mean (SEM)

References

    1. Grontved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;305(23):2448–2455. doi: 10.1001/jama.2011.812.
    1. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, Khunti K, Yates T, Biddle SJ. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–2905. doi: 10.1007/s00125-012-2677-z.
    1. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–1791. doi: 10.1001/jama.289.14.1785.
    1. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590–597. doi: 10.1093/eurheartj/ehq451.
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. doi: 10.1249/MSS.0b013e3181930355.
    1. Carlson SA, Adams EK, Yang Z, Fulton JE. Percentage of deaths associated with inadequate physical activity in the United States. Prev Chronic Dis. 2018;15:E38.
    1. Carlson SA, Fulton JE, Pratt M, Yang Z, Adams EK. Inadequate physical activity and health care expenditures in the United States. Prog Cardiovasc Dis. 2015;57(4):315–323. doi: 10.1016/j.pcad.2014.08.002.
    1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet (London, England) 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–2667. doi: 10.2337/db07-0882.
    1. Helmerhorst HJ, Wijndaele K, Brage S, Wareham NJ, Ekelund U. Objectively measured sedentary time may predict insulin resistance independent of moderate- and vigorous-intensity physical activity. Diabetes. 2009;58(8):1776–1779. doi: 10.2337/db08-1773.
    1. Araiza P, Hewes H, Gashetewa C, Vella CA, Burge MR. Efficacy of a pedometer-based physical activity program on parameters of diabetes control in type 2 diabetes mellitus. Metabolism. 2006;55(10):1382–1387. doi: 10.1016/j.metabol.2006.06.009.
    1. Thosar SS, Johnson BD, Johnston JD, Wallace JP. Sitting and endothelial dysfunction: the role of shear stress. Med Sci Monit. 2012;18(12):RA173–RA180. doi: 10.12659/MSM.883589.
    1. Widlansky ME. The danger of sedenterism: endothelium at risk. Am J Physiol Heart Circ Physiol. 2010;299(2):H243–H244. doi: 10.1152/ajpheart.00505.2010.
    1. Demiot C, Dignat-George F, Fortrat JO, Sabatier F, Gharib C, Larina I, Gauquelin-Koch G, Hughson R, Custaud MA. WISE 2005: Chronic bed rest impairs microcirculatory endothelium in women. Am J Physiol Heart Circ Physiol. 2007;293(5):H3159–H3164. doi: 10.1152/ajpheart.00591.2007.
    1. Pleis JR, Lucas JW, Ward BW. Summary health statistics for U.S. adults: National Health Interview Survey, 2008. Vital Health Stat 10. 2009(242):1–157 Data from the National Health Survey.
    1. Zhan C, Baine WB, Sedrakyan A, Steiner C. Cardiac device implantation in the United States from 1997 through 2004: a population-based analysis. J Gen Intern Med. 2008;23(Suppl 1):13–19. doi: 10.1007/s11606-007-0392-0.
    1. Bradshaw PJ, Stobie P, Knuiman MW, Briffa TG, Hobbs MS. Trends in the incidence and prevalence of cardiac pacemaker insertions in an ageing population. Open heart. 2014;1(1):e000177. doi: 10.1136/openhrt-2014-000177.
    1. Brueck M, Bandorski D, Kramer W. Incidence of coronary artery disease and necessity of revascularization in symptomatic patients requiring permanent pacemaker implantation. Medizinische Klinik (Munich, Germany: 1983) 2008;103(12):827–830. doi: 10.1007/s00063-008-1130-z.
    1. Alai MS, Beig JR, Kumar S, Yaqoob I, Hafeez I, Lone AA, Dar MI, Rather HA. Prevalence and characterization of coronary artery disease in patients with symptomatic bradyarrhythmias requiring pacemaker implantation. Indian Heart J. 2016;68 Suppl 3(Suppl 3):S21–S25. doi: 10.1016/j.ihj.2016.06.013.
    1. Shuval K, Leonard T, Drope J, Katz DL, Patel AV, Maitin-Shepard M, Amir O, Grinstein A. Physical activity counseling in primary care: insights from public health and behavioral economics. CA Cancer J Clin. 2017;67(3):233–244. doi: 10.3322/caac.21394.
    1. Bassett DR, John D. Use of pedometers and accelerometers in clinical populations: validity and reliability issues. Phys Ther Rev. 2010;15(3):135–142. doi: 10.1179/1743288X10Y.0000000004.
    1. Dell'Orto S, Valli P, Greco EM. Sensors for rate responsive pacing. Indian Pacing Electrophysiol J. 2004;4(3):137–145.
    1. Hummen DPAK, Brumwell D, et al. Proceeding of the VIIth World Symposium on Cardiac Pacing. 1983. A pacemaker which automatically increases its rate with physical activity. Cardiac Pacing; p. 259.
    1. Tyagi S, Curley M, Berger M, Fox J, Strath SJ, Rubenstein J, Roth J, Widlansky ME. Pacemaker quantified physical activity predicts all-cause mortality. J Am Coll Cardiol. 2015;66(6):754–755. doi: 10.1016/j.jacc.2015.06.005.
    1. Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34(1):111–118. doi: 10.1016/j.gaitpost.2011.03.024.
    1. Whitlock EP, Orleans CT, Pender N, Allan J. Evaluating primary care behavioral counseling interventions: an evidence-based approach. Am J Prev Med. 2002;22(4):267–284. doi: 10.1016/S0749-3797(02)00415-4.
    1. Oman RF, King AC. Predicting the adoption and maintenance of exercise participation using self-efficacy and previous exercise participation rates. Am J Health Promot. 1998;12(3):154–161. doi: 10.4278/0890-1171-12.3.154.
    1. McAuley E, Morris KS, Motl RW, Hu L, Konopack JF, Elavsky S. Long-term follow-up of physical activity behavior in older adults. Health Psychol. 2007;26(3):375–380. doi: 10.1037/0278-6133.26.3.375.
    1. King AC, Taylor CB, Haskell WL, DeBusk RF. Strategies for increasing early adherence to and long-term maintenance of home-based exercise training in healthy middle-aged men and women. Am J Cardiol. 1988;61(8):628–632. doi: 10.1016/0002-9149(88)90778-3.
    1. Chao D, Foy CG, Farmer D. Exercise adherence among older adults: challenges and strategies. Control Clin Trials. 2000;21(5 Suppl):212S–217S. doi: 10.1016/S0197-2456(00)00081-7.
    1. Artinian NT, Fletcher GF, Mozaffarian D, Kris-Etherton P, Van HL, Lichtenstein AH, Kumanyika S, Kraus WE, Fleg JL, Redeker NS, et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(4):406–441. doi: 10.1161/CIR.0b013e3181e8edf1.
    1. Suboc T, Strath SJ, Dharmashankar K, Coulliard A, Miller N, Wang J, Tanner MJ, Widlansky ME. Relative Importance of Step Count, Intensity, and Duration on Physical Activity's Impact on Vascular Structure and Function in Previously Sedentary Older Adults. J Am Heart Assoc. 2014. 10.1161/JAHA.1113.000702.
    1. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–1357. doi: 10.1161/01.CIR.102.12.1351.
    1. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270–1275. doi: 10.1161/01.CIR.102.11.1270.
    1. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette Guyonnet S, Inzitari M, et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging. 2009;13(10):881–889. doi: 10.1007/s12603-009-0246-z.
    1. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–58. doi: 10.1001/jama.2010.1923.
    1. Kramer DB, Tsai T, Natarajan P, Tewksbury E, Mitchell SL, Travison TG. Frailty, physical activity, and mobility in patients with cardiac implantable electrical devices. J Am Heart Assoc. 2017;6(2). 10.1161/JAHA.116.004659.
    1. Rosman L, Lampert R, Sears SF, Burg MM. Measuring Physical Activity With Implanted Cardiac Devices: A Systematic Review. J Am Heart Assoc. 2018;7(11):e008663. doi: 10.1161/JAHA.118.008663.
    1. McCullagh R, Dillon C, O'Connell AM, Horgan NF, Timmons S. Step-count accuracy of 3 motion sensors for older and frail medical inpatients. Arch Phys Med Rehabil. 2017;98(2):295–302. doi: 10.1016/j.apmr.2016.08.476.
    1. Beevi FH, Miranda J, Pedersen CF, Wagner S. An evaluation of commercial pedometers for monitoring slow walking speed populations. Telemed J E Health. 2016;22(5):441–449. doi: 10.1089/tmj.2015.0120.
    1. Giannakidou DM, Kambas A, Ageloussis N, Fatouros I, Christoforidis C, Venetsanou F, Douroudos I, Taxildaris K. The validity of two Omron pedometers during treadmill walking is speed dependent. Eur J Appl Physiol. 2012;112(1):49–57. doi: 10.1007/s00421-011-1951-y.
    1. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep. 2003;26(3):342–392. doi: 10.1093/sleep/26.3.342.
    1. Full KM, Kerr J, Grandner MA, Malhotra A, Moran K, Godoble S, Natarajan L, Soler X. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography. Sleep Health. 2018;4(2):209–216. doi: 10.1016/j.sleh.2017.12.007.
    1. Folley S, Zhou A, Hypponen E. Information bias in measures of self-reported physical activity. Int J Obes. 2018;42(12):2062–2063. doi: 10.1038/s41366-018-0223-x.
    1. Vitale JA, Lombardi G, Weydahl A, Banfi G. Biological rhythms, chronodisruption and chrono-enhancement: the role of physical activity as synchronizer in correcting steroids circadian rhythm in metabolic dysfunctions and cancer. Chronobiol Int. 2018;35(9):1185–1197. doi: 10.1080/07420528.2018.1475395.
    1. Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(Suppl 3):1–72. doi: 10.1111/sms.12581.
    1. Briguglio M, Vitale JA, Galentino R, Banfi G, Zanaboni Dina C, Bona A, Panzica G, Porta M, Dell'Osso B, Glick ID. Healthy eating, physical activity, and sleep hygiene (HEPAS) as the winning triad for sustaining physical and mental health in patients at risk for or with neuropsychiatric disorders: considerations for clinical practice. Neuropsychiatr Dis Treat. 2020;16:55–70. doi: 10.2147/NDT.S229206.
    1. Phu S, Boersma D, Duque G. Exercise and sarcopenia. J Clin Densitom. 2015;18(4):488–492. doi: 10.1016/j.jocd.2015.04.011.

Source: PubMed

3
Se inscrever