A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity

Wendy Hardeman, Julie Houghton, Kathleen Lane, Andy Jones, Felix Naughton, Wendy Hardeman, Julie Houghton, Kathleen Lane, Andy Jones, Felix Naughton

Abstract

Background: Progress in mobile health (mHealth) technology has enabled the design of just-in-time adaptive interventions (JITAIs). We define JITAIs as having three features: behavioural support that directly corresponds to a need in real-time; content or timing of support is adapted or tailored according to input collected by the system since support was initiated; support is system-triggered. We conducted a systematic review of JITAIs for physical activity to identify their features, feasibility, acceptability and effectiveness.

Methods: We searched Scopus, Medline, Embase, PsycINFO, Web of Science, DBLP, ACM Digital Library, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov and the ISRCTN register using terms related to physical activity, mHealth interventions and JITAIs. We included primary studies of any design reporting data about JITAIs, irrespective of population, age and setting. Outcomes included physical activity, engagement, uptake, feasibility and acceptability. Paper screening and data extraction were independently validated. Synthesis was narrative. We used the mHealth Evidence Reporting and Assessment checklist to assess quality of intervention descriptions.

Results: We screened 2200 titles, 840 abstracts, 169 full-text papers, and included 19 papers reporting 14 unique JITAIs, including six randomised studies. Five JITAIs targeted both physical activity and sedentary behaviour, five sedentary behaviour only, and four physical activity only. JITAIs prompted breaks following sedentary periods and/or suggested physical activities during opportunistic moments, typically over three to four weeks. Feasibility challenges related to the technology, sensor reliability and timeliness of just-in-time messages. Overall, participants found JITAIs acceptable. We found mixed evidence for intervention effects on behaviour, but no study was sufficiently powered to detect any effects. Common behaviour change techniques were goal setting (behaviour), prompts/cues, feedback on behaviour and action planning. Five studies reported a theory-base. We found lack of evidence about cost-effectiveness, uptake, reach, impact on health inequalities, and sustained engagement.

Conclusions: Research into JITAIs to increase physical activity and reduce sedentary behaviour is in its early stages. Consistent use and a shared definition of the term 'JITAI' will aid evidence synthesis. We recommend robust evaluation of theory and evidence-based JITAIs in representative populations. Decision makers and health professionals need to be cautious in signposting patients to JITAIs until such evidence is available, although they are unlikely to cause health-related harm.

Reference: PROSPERO 2017 CRD42017070849.

Keywords: Digital intervention; Exercise; Just-in-time Adaptive Intervention; Mobile Health; Mobile applications; Physical activity; Sedentary behaviour; Telemedicine.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram of study selection

References

    1. World Health Organization. mHealth: new horizons for health through mobile technologies: second global survey on eHealth. (Accessed 19 Dec 2018). 2011.
    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–131.
    1. Direito A, Carraca E, Rawstorn J, Whittaker R, Maddison R. mHealth technologies to influence physical activity and sedentary behaviors: behavior change techniques, systematic review and meta-analysis of randomized controlled trials. Ann Behav Med. 2017;51(2):226–239. doi: 10.1007/s12160-016-9846-0.
    1. Stephenson A, McDonough SM, Murphy MH, Nugent CD, Mair JL. Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):105. doi: 10.1186/s12966-017-0561-4.
    1. Hakala S, Rintala A, Immonen J, Karvanen J, Heinonen A, Sjogren T. Effectiveness of technology-based distance interventions promoting physical activity: systematic review, meta-analysis and meta-regression. J Rehabil Med. 2017;49(2):97–105. doi: 10.2340/16501977-2195.
    1. Muller AM, Alley S, Schoeppe S, Vandelanotte C. The effectiveness of e-& mHealth interventions to promote physical activity and healthy diets in developing countries: a systematic review. Int J Behav Nutr Phys Act. 2016;13(1):109. doi: 10.1186/s12966-016-0434-2.
    1. Middelweerd A, Mollee JS, van der Wal CN, Brug J, Te Velde SJ. Apps to promote physical activity among adults: a review and content analysis. Int J Behav Nutr Phys Act. 2014;11:97. doi: 10.1186/s12966-014-0097-9.
    1. Nahum-Shani S, Smith S, Tewari A, Witkiewitz K, Collins LM, Spring B, et al. Just-in-time adaptive interventions (JITAIs): An organizing framework for ongoing health behavior support. (Technical Report No. 14–126) University Park, PA: The Methodology Center, Penn State; 2014.
    1. Naughton F. Delivering “Just-in-time” smoking cessation support via mobile phones: current knowledge and future directions. Nicotine Tob Res. 2016;19(3):379–383.
    1. Krebs P, Prochaska JO, Rossi JS. A meta-analysis of computer-tailored interventions for health behavior change. Prev Med. 2010;51(3–4):214–221. doi: 10.1016/j.ypmed.2010.06.004.
    1. Karmeniemi M, Lankila T, Ikaheimo T, Koivumaa-Honkanen H, Korpelainen R. The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. Ann Behav Med. 2018;52(3):239–251. doi: 10.1093/abm/kax043.
    1. Müller AM, Blandford A, Yardley L. The conceptualization of a just-in-time adaptive intervention (JITAI) for the reduction of sedentary behavior in older adults. mHealth. 2017;3(37).
    1. Schembre SM, Liao Y, Robertson MC, Dunton GF, Kerr J, Haffey ME, et al. Just-in-time feedback in diet and physical activity interventions: systematic review and practical design framework. J Med Internet Res. 2018;20(3):e106. doi: 10.2196/jmir.8701.
    1. Hardeman W, Houghton J, Lane K, Jones A, Naughton F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. CRD42017070849 Available from: 2017.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Br Med J. 2009;339:b2535. doi: 10.1136/bmj.b2535.
    1. Michie S, Richardson M, Johnston M, Abraham C, Francis JJ, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95. doi: 10.1007/s12160-013-9486-6.
    1. Perski O, Blandford A, West R, Michie S. Conceptualising engagement with digital behaviour change interventions: a systematic review using principles from critical interpretive synthesis. Transl Behav Med. 2017;7(2):254–267. doi: 10.1007/s13142-016-0453-1.
    1. Agarwal S, LeFevre AE, Lee J, L'Engle K, Mehl G, Sinha C, et al. Guidelines for reporting of health interventions using mobile phones: mobile health (mHealth) evidence reporting and assessment (mERA) checklist. Br Med J. 2016;352:i1174. doi: 10.1136/bmj.i1174.
    1. Lin Y. Motivate mobile application design and development. Motivate : a context-aware mobile application for physical activity promotion. Eindhoven: Technische Universiteit Eindhoven; 2013. p. 73–94. 10.6100/IR7501852013.
    1. Tabak M. Improving long-term activity behaviour of individual patients with COPD using an ambulant activity coach. Telemedicine for patients with COPD: new treatment approaches to improve daily activity behaviour: Centre for Telematics and Information Technology, University of Twente, The Netherlands; 2014. p. 97–118.
    1. Ding X. Understanding mobile app addiction and promoting physical activities: University of Massachusetts Lowell; 2016.
    1. King AC, Hekler EB, Grieco LA, Winter SJ, Sheats JL, Buman MP, et al. Harnessing different motivational frames via mobile phones to promote daily physical activity and reduce sedentary behavior in aging adults. PLoS One. 2013;8(4).
    1. Consolvo S, McDonald DW, Toscos T, Chen MY, Froehlich J, Harrison B, et al. Activity sensing in the wild: a field trial of UbiFit garden. Burnett M, Costabile MF, Catarci T, DeRuyter B, Tan D, Czerwinski M, et al., editors 2008. p 1797–806
    1. Bickmore TW, Mauer D, Brown T. Context awareness in a handheld exercise agent. Pervasive Mobile Comput. 2009;5(3):226–235. doi: 10.1016/j.pmcj.2008.05.004.
    1. Rabbi M, Aung MH, Zhang M, Choudhury T. MyBehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. UBICOMP '15, September 7–11, 2015, Osaka, Japan. 2015:707--18.
    1. Lin Y. Evaluation user study of motivate final version. Motivate : a context-aware mobile application for physical activity promotion. Eindhoven: Technische Universiteit Eindhoven. . p. 95-126.
    1. Lin Y, Jessurun J, De Vries B, Timmermans H, editors. Motivate: towards context-aware recommendation mobile system for healthy living. Proceeding of 5th international ICST conference on pervasive computing Technologies for Healthcare; 2011.
    1. Rabbi M, Pfammatter A, Zhang M, Spring B, Choudhury T. Automated personalized feedback for physical activity and dietary behavior change with mobile phones: a randomized controlled trial on adults. JMIR Mhealth Uhealth. 2015;3(2).
    1. Van Dantzig SB, M; Krans, M; Van der Lans, A.; De Ruyter, B. Enhancing physical activity through context-aware coaching. Proceedings of Pervasive Health conference (Pervasive Health 2018) ACM, New York York, 10.1145/3240925.3240928. 2018.
    1. Bond DS, Thomas JG, Raynor HA, Moon J, Sieling J, Trautvetter J, et al. B-MOBILE - a smartphone-based intervention to reduce sedentary time in overweight/obese individuals: a within-subjects experimental trial. PLoS One. 2014;9(6):e100821. doi: 10.1371/journal.pone.0100821.
    1. Ding X, Xu J, Wang H, Chen G, Thind H, Zhang Y. WalkMore: Promoting walking with just-in-time context-aware prompts. IEEE Wireless Health. 2016;2016:65–72.
    1. Finkelstein J, McKenzie B, Li X, Wood J, Ouyang P. Mobile app to reduce inactivity in sedentary overweight women. MedInfo 2015: eHealth-enabled Health. 2015:89–92.
    1. Van Dantzig S, Geleijnse G, Halteren AT. Toward a persuasive mobile application to reduce sedentary behavior. Pers Ubiquit Comput. 2013;17(6):1237–1246. doi: 10.1007/s00779-012-0588-0.
    1. Pellegrini CA, Hoffman SA, Daly ER, Murillo M, Iakovlev G, Spring B. Acceptability of smartphone technology to interrupt sedentary time in adults with diabetes. Transl Behav Med. 2015;5(3):307–314. doi: 10.1007/s13142-015-0314-3.
    1. Gouveia R, Karapanos E, Hassenzahl M. How do we engage with activity trackers?: a longitudinal study of Habito. UBICOMP '15, September 7–11, 2015, Osaka, Japan. 2015:1305--16.
    1. He Q, Agu E. On11: An activity recommendation application to mitigate sedentary lifestyle. WPA’14, June 16 2014, Bretton Woods, NH, USA. 2014:3--8.
    1. Rajanna V, Lara-Garduno R, Behera DJ, Madanagopal K, Goldberg D, Hammond T, editors. Step up life: a context aware health assistant. HealthGIS’14, November 04–07 2014, Dallas/Fort Worth, TX, USA; 2014.
    1. Fogg B, Editor A behavior model for persuasive design. Proceedings of the 4th international conference on persuasive technology; 2009; 4th international conference on persuasive technology; April 26-29, 2009; Claremont, CA: New York, NY: ACM.
    1. Godino JG, Watkinson C, Corder K, Marteau TM, Sutton S, Sharp SJ, et al. Impact of personalised feedback about physical activity on change in objectively measured physical activity (the FAB study): a randomised controlled trial. PLoS One. 2013;8(9):e75398. doi: 10.1371/journal.pone.0075398.
    1. King AC, Hekler EB, Grieco LA, Winter SJ, Sheats JL, Buman MP, et al. Effects of three motivationally targeted mobile device applications on initial physical activity and sedentary behavior change in midlife and older adults: a randomized trial. PLoS One. 2016;11(6):e0156370. doi: 10.1371/journal.pone.0156370.
    1. Matthews J, Win KT, Oinas-Kukkonen H, Freeman M. Persuasive technology in mobile applications promoting physical activity: a systematic review. J Med Syst. 2016;40(3):72. doi: 10.1007/s10916-015-0425-x.
    1. Blackman KC, Zoellner J, Berrey LM, Alexander R, Fanning J, Hill JL, et al. Assessing the internal and external validity of mobile health physical activity promotion interventions: a systematic literature review using the RE-AIM framework. J Med Internet Res. 2013;15(10):e224. doi: 10.2196/jmir.2745.
    1. Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2018;52:446. doi: 10.1007/s12160-016-9830-8.
    1. Collins LM, Kugler KC, Gwadz MV. Optimization of multicomponent behavioral and biobehavioral interventions for the prevention and treatment of HIV/AIDS. AIDS Behav. 2016;20(Suppl 1):S197–S214. doi: 10.1007/s10461-015-1145-4.
    1. Collins LM, Nahum-Shani I, Almirall D. Optimization of behavioral dynamic treatment regimens based on the sequential, multiple assignment, randomized trial (SMART) Clin Trials. 2014;11(4):426–434. doi: 10.1177/1740774514536795.
    1. Van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14(1):142. doi: 10.1186/s12966-017-0601-0.
    1. Thomas JG, Bond DS. Behavioral response to a just-in-time adaptive intervention (JITAI) to reduce sedentary behavior in obese adults: implications for JITAI optimization. Health Psychol. 2015;34:1261–1267. doi: 10.1037/hea0000304.
    1. Ouyang P, Stewart KJ, Bedra ME, York S, Valdiviezo C, Finkelstein J. Text messaging to reduce inactivity using real-time step count monitoring in sedentary overweight females. Circ Conf 2015;131(no pagination).
    1. Hermens H, op den Akker H, Tabak M, Wijsman J, Vollenbroek M. Personalized coaching systems to support healthy behavior in people with chronic conditions. J Electromyogr Kinesiol. 2014;24(6):815–826. doi: 10.1016/j.jelekin.2014.10.003.

Source: PubMed

3
Se inscrever